
����������	
����

��������	��
��������
	�������	
������	��		
������	
�����	��
	����������

���
�������	
��
��������

��	���	��������	���	�������������������
�����
����
����������	�����	
�����
�	�	����	�����	������������	�������	����	���	���	�������������
�����������
��	��������

���
�����	����	
��
�
�	�
�������
�	�������	

����������	
���	�����	����	�����������������
�	���
����	����	���	���
��������
���
��������������������	�����
�������������������
�����������

���
�������	
��
���������
�����
�	�
��	��	�
���
��
��
�����

��	� ��	�� !"�����	������	��	��	#�������$�����	�	
���	�������������	�	�������
����	�	���������
�
����
���������	�����	�	
�������������	���
�����%" �&��������������
�����'��������	����&�������	���������
�����(����&��		�������������

���
��	
���
��
��
!
��"����
�	�
����
�

�	�	�������
���
����	��	��������
������	����������
������)*����	����	����
��	��	���������������
�����������

���
��	
���
������
�	
�	�������
�����	�
�

+������
�	�����������
	����
��	���	��	��,�
(#����
����
����	�����
��
���	�	#����	�����
�	#�	�
����
�	������-�.�/��
���.��01���
��2���������

#��������
�	�
��
��
���
�����
�
���	���

������
��������������
����	���	�����	�	
�����	�������	����	�)���
�	���	����	�����,�
������3��������	��)����
�	��/�&���/���������
������04��������	��)����
�	��0&���0���������
������3��������	��5�&���5���������

���
���
����
���	������
�����"�
�
������
�	�������
�

"	�	���
���
�����
������
�����������������	�6 "�������	��
���	� !"���
�����	���
�������������

�	���"
�����
������	"
��"����

6��
����	�0/����
����)7���������
�	��	���
���	���
��	���
�	����
������		���

�
�����	��
�����������

�������	"
��
�	���"
�����

������	������
���������	��������	��������	�
�������������������
�������������

�

����&))���������	���
	�) !"9��)

How to adapt a makefile for your programms:

In order to create an executable program (ownprog.rom) from a source file
(ownprog.c) one ought to have some instructions.
They need to be repeated after each change of program.
To avoid this there is a more efficient possibility.
The instructions are summarized and stored in a so called makefile.
In order to carry out this makefile you need to have the program make,
which has already been integrated in this compiler area.
The makefile and the source file should be in the same directory.

The makefile is carried out step by step through calling up the
instruction make and so one gets the wanted program.
The makefile needs two include files (make1,make2) as well. Both files
contain parts of the whole makefile, which don´t have to be changed for the
use for the most part. Both files you can find in the directory ($avr)/include.

For further information look up the program make and its helpfile.

The structure of a possible makefile:

This part includes the make1 file of the include directory
include $(AVR)/include/make1

#Put the name of the controller you have used here.#
MCU = at90s8535

#At this place you can insert a new name for the program but you
should better keep the original name.#
TRG = ownprog

#These are names of your programs which should be translated.#
SRC = owninc1.c owninc2.c ownprog.c

#Put additional assembler source files here#
ASRC =

#Additional libraries and object files to link#
LIB =

#Additional includes to compile#
INC =

#Compiler flags#
CPFLAGS =-g -O3 -Wall -Wstrict-prototypes -Wa,-hlms=$(<:.c=.lst)

#Assembler flags#
ASFLAGS = -gstabs

#Linker flags#
LDFLAGS =

#Here the makefile includes the make2 file - which
don´t need to be changed.#
include $(AVR)/include/make2

#Dependencies: The program make knows with its dependencies
which parts of the program have to be translated or not.
If owninc1 is changed, only the program itself and the program
which includes owninc1, is translated. owninc2 is not translated
again because there is no dependency to owninc1.#

ownprog.o :ownprog.c owninc1.h owninc2.h
owninc1.o :owninc1.c owninc1.h
owninc2.o :owninc2.c owninc2.h

How to integrate assembler instruction:

Sometimes you need functions for programming that cannot be carried
out through a C instruction or it seems easier to write a few assembler
instructions. There are two possibilities to add an assembler code into
the C sourcefile.
The first possibility is to write the assembler instructions directly into the
sourcecode and the second one is to write macros.
Macros are always used in case you need the implemented function
more often. The macros are always directly added at the place where
they are called. Suitable assembler instructions you need for
programming you can take out of the instructional sentence of the AVR
processor series. The keyword asm must be together with the
instructions so that the compiler realises that assembler instructions are
given.
You can put multiple assembler instructions together in a single asm
template, separated wither with „\n“ or with semicolons.
Further labels can be defined that can be called up through jump
instructions.
It’s not possible to jump from one asm to another asm area.
After the input of the instructions, which are put in inverted commas, you
can specify the characteristics of the used input variables, output
variables or registers.
A colon separates the assembler template from the first output operand
and another separates the last output operand from the first input
operand.

If there are no output operands but there are input operands, you must
place two consecutive colons that surround the place where the output
operands would go.

In addition to that the qualities of the operands can be determined
through constrains. Constrains can say whether an operand may be a
register, and which kinds of register; whether the operand can be a
memory reference, and which kinds of address; wheter the operand may
be an immediate constant, an which possible values it may have.
Constrains can also require two operands to match. („=r“)
To make sure the instruction operates on the correct data type you need
to use a typecast in the asm statements.
(for example: :“r“ ((uint8_t)(val)))

Constrains:

The ordinary output operands must be of the state „write-only“.

Often used constrains:

„r“ The value is handed through a general register.

„i“ An immediate integer operand (0-255) is allowed. This includes
symbolic constants whose values will be known only at assembly time.

„I“ „I“ is defined to stand for the range of values 0 to 63.

„z“ The transfered value is loaded into the z-register
(low byte -> R30, high byte R31)

„y“ The transfered value is loaded into the y-register
(low byte -> R28, high byte R29)

„x“ The transfered value is loaded into the x-register
(low byte -> R26, high byte R27)

For the output parameters you have to put a „=“ in front of the
constrain parameter.
Also, if your instruction does have a side effect on a variable that
otherwise appears not to change, the old value of the variable may be
re-used later if it happens to be found in a register. You can prevent an
asm instruction from being deleted, moved significantly or combined by
writing the keyword volatile after the asm command.If you write an asm
instruction with no output the compiler knows that the instruction has side
effects and will not delete them. If you write a header file write __asm__
instead of asm.

Filling in the assembler instructions directly:

Construction:
...
asm volatile („operator operand;operator operand....“

: input variables
: output variables
: used registers)

...

example:

/* a simple program to show the usage of assembler code in
your c- programs

8/00 Leitner Harald */

#include<io.h>

uint8_t val1, val2;

int main(void)
{
outp(0xff,DDRB); /* use all pins on PortB for output */
val1 = 3;
val2 = 4;

asm volatile
("LDS R30,val1; /* start of the asm part*/

LDS R31,val2;
ADD R30,R31;
RJMP do; /* definition of jump labels */
LDI R30,0xFF;
do:STS val1,R30;"
::);

outp(~val1,PORTB); /* write result of val1+val2 to Port */
for (;;){}
 }

Insert the assembler instructions through macros:

The structure is similar to the normal insertion of assembler instructions.
Through the creation of such macros and the integration under C you
can easily make complex instructions.

Construction:

define macroname(variablelist) \
({ variables declaration list \
asm („ operator operand \

operator operand“\
: output parameters\
: input parameters\
: used registers)\ })

The essential difference is that no fixed variables are indicated but
placeholder who refer to the variables.
These placeholders could also stand for bigger types of variables. For

example:

1Byte :
#define xyz (val) (\

asm volatile (
„mov r30, %0“ \
: /* no output */ \
: „r“ (val)\
)

The placeholder %0 stands for the variable val.

2Byte:
#define xyz (address) (\

asm volatile (
„mov r30, %A1 \
mov r30, %B1“ \
: /* no output */ \
: „r“ (address)\
)

address is a 16 bit value which is seperated through %A1 and %B1 to a
low and high byte.

Example:

/* simple program to show the usage of assembler code in
your c-programs and how to define and run macros

 8/00 Leitner Harald*/

#define outport(val, port)\
asm volatile (\

"out %1, %0"\
: /* no outputs */ \
: "r" ((uint8_t)(val)),\
 "I" ((uint8_t)(port))\

)

#define DDRB 0x17
#define PORTB 0x18

typedef unsigned char uint8_t;

uint8_t val1;
uint8_t val2;

int main(void)
{ /* call output macro and */
outport(0xff,DDRB); /* use all pins on PortB for output */
val1 = 2;
val2 = 4;

asm volatile (
"LDS R30,val1;

LDS R31,val2;
ADD R30,R31;

 STS val2,R30"::);

outport(~val2,PORTB); /* call output macro and write result to PortB
(Leds) */
for (;;){}
}

The macro outport has two input parameters val and port.
The placeholder %0 stands for the variable val and %1 for port.

For the input parameters the type of both is mentioned ((uint8_t)).
The field you can mention optionally for the used registers is not used.

Variables in the SRAM:

Variables that are defined in the program without any attributes are
placed by the compiler into the SRAM of the controller.
This memory is directly integrated, not with I/O registers.
The advantage of this is that the reading and writing is faster than in
other memory forms and you don’t need other approaching functions.

Frequently used integer data types are summarized in the include file
<inttypes.h>.
As soon as the file <io.h> is included, the data types of <inttypes.h> are
automatically included as well.
Constantes are filed trough giving the keyword const. This variables are
of the state „read only“ and cannot be altered.

Pre-defined variables in the include file <inttypes.h>:

name of the
data typ

length
in byte

value range

Int8_t 1 -128 to 127
Uint8_t 1 0 to 255
Int16_t 2 -32768 to 32767

Uint16_t 2 0 to 65535
Int32_t 4 -2147483648 to

2147483647
Uint32_t 4 0 to 4294967295
Int64_t 8 -9.22*10^18 to

9.22*10^18
Uint64_t 8 0 to 1.844*10^19

Definition:

Creation of a variable in the SRAM:

Uint_8 val = 8;

Through this instruction a new variable val in the SRAM is filed and
initialized with value 8. The variable reserves a one byte value.

Alteration of the variable in the SRAM:

Val = 10;

Because of that the value that is on the given address that is mentioned
through val is altered.

Creation of a constante in the SRAM:

Const uint8_t october = 10;

Through this instruction a constante in SRAM is filed that is of the value
10. The name of this constante is october and can only be read but not
written, because of that an alteration in the value is not possible.

The filing of register variables:

Register uint8_t alwaysused = 10;

Through this instruction variables are created that are assigned to a
register. This is especially useful for variables that are used frequently.

Variables in the program memory:

The memory of data in the program memory is very useful because the
data are filed from the beginning and don‘t have to be created first.
A possible application is the filing of the different sentences which have
to be shown on a lcd display, in the program memory because they don’t
have to be altered.
You could file the constants in the SRAM as well, but as however the
program memory is larger than the SRAM and as the data don’t have to
be altered the memory in the program memory is a better alternative.
When you download the program, the defined constantes are filed as a
part of the program.
The creation of these data is through the keyword __attribute__
((progmem)). In order to avoid mentioning the keyword after the creation
of a data record, suitable data types have already been designed in the
include file <progmem.h>.
This file also includes all access procedures that are necessary for the
reading of the data.

8 bit data typ:

prog_char

Singular value:

The creation of a constante in the program memory:

prog_char LINE = {1};

Here value 1 is filed in the program memory.
LINE obtains the address of where the value is situated.

The reading of the constants:

char res = PRG_RDB(&LINE)

Through the address of LINE the value can be read and
memorized in the variable res that is situated in the SRAM.

Array:

The creation of an array in the program memory:

prog_char TEN[10] = {0,1,2,3,4,5,6,7,8,9};

Here you have the possibility of defining an open array.
(prog_char TEN[] = {0,1,2,3,4,5,6,7,8,9};)

Reading of the value TEN[5]:

char res = PRG_RDB(&value[5])

With this instruction the value of TEN in position 5 is memorized
into the variable res.

16bit data typ: prog_int
32bit data typ: prog_long
64bit data typ: prog_long_long

The applications of the 16 bit(2Byte), 32 bit(4Byte), 64 bit(8Byte) data
types correspond with those of the 8 bit data type.
The only difference is that these types reserve more memory.

Further applications:

The filing of a character string in the program memory.

Version1:

• The creation of a character string:

Char *LINE1 = PSTR(„The first line of my LCD display“);

This definition files the sentence in the program memory and leads
the pointer back, that points to the first sign of the character string.

• The reading of a sign of the character string:

Char lastchar = PRG_RDB (LINE1+42);

The variable (in the RAM) lastchar now contains the 42th letter of
the character string LINE1.

Version2:

• The creation of a character string:

Char LINE2[] __attribute__ ((progmem)) = „this is an other version“;

With this definition a field is created in which the sentence „this is
an other version“ is filed.

• The reading of a sign of the character string:

Char firstchar = PRG_RDB (&[LINE2[0]);

The variable firstchar (in the SRAM) now contains the first letter of
the character string LINE2.

Special operation of approach in <progmem.h>:

uint PRG_RDB(uint16_t addr);

This function contains as an input the address where you can find the
value in the program memory and as a return the value itself.

PSTR(s);

PSTR files a string in the program memory and provides a starting
address.

Variables in the eeprom (electrical erasable
programmable read only memory):

In contrast to the simple definition of variables in SRAM for the usage of the
eeprom which is integrated through I/O registers you need special access
procedures.
This procedures can be found in the include file <eeprom.h>.

Procedures:

eeprom_wb (unsigned int addr, unsigned char val);

This procedure allows to write the value val to a defined
address addr.

unsigned char eeprom_rb (unsigned int addr);

With the eeprom_rb you can read a value (one byte) out of the eeprom
address addr and this is directly handed over in the form

value = eeprom_rb (addr);

unsigned int eeprom_rw (unsigned int addr);

With the eeprom_rw you can read a 16bit value (two byte) out of the
eeprom address addr and this is directly handed over in the form

value = eeprom_rw (addr);

eeprom_read_block (void *buf, unsigned int addr, size_t n);

With this procedure n values are read out of the address addr and written
into the SRAM. The starting address in SRAM is transmitted with the *buf.

int eeprom_is_ready (void);

This function returns one if the eeprom is ready and zero if the eeprom is
busy.

The use of the procedures:

• First kind of use:

It is possible to memorize a value directly on the eeprom. One only has to
name an address and a value.You will soon lose back of things, if you draw
up various values of this kind because you have to manage the addresses
to the variables.

example:

/* This program stores the value $AA
on the eeprom at the address $0.
Then the value at address $0 is read
and written to PORTB

10/00
Leitner Harald*/

#include <io.h>
#include <eeprom.h>
int main(void)
{

uint8_t val1 = 0xAA, val2;

eeprom_wb(0x00, val1); /* file val1 at eeprom */

val2 = eeprom_rb(0x00); /* read eeprom at address $0 */

outp(0xff,DDRB);

outp(val2,PORTB); /* show val2 on PORTB */
for (;;) {}
}

Here the value of the varaible val1 is memorized on the address 0 of the
eeprom. Afterwards the value, you can find on address 0, is read and
memorized in variable val2.
This value is shown by the leds.

• Second kind of use:

An assembler programmer is familiar with the first way, but it should be
easier to handle in a higher language.
Therefore there exists a more useful variation. A variable whose address is
located in the surroundings of the eeprom is defined. Because of that you
don't need an explicit address, you can take the one of the variable.
The variable can be defined as follows:

example:

/* This program writes the value $AA in the
variable val1 that is defined on the eeprom.
Afterwards the variable val1 is read and
written to PORTB

10/00 Leitner Harald*/

#include <io.h>
#include <eeprom.h>

int main(void)
{

/* That's the way to define a eeprom variable */
static uint8_t val1 __attribute__((section(".eeprom")));

uint8_t val2;

outp(0xFF,DDRB);

eeprom_wb ((uint8_t)&val1, 0xAA); /* writing the val1 */

val2 = eeprom_rb((uint8_t)&val1); /* reading of val1 */

outp(val2,PORTB);

for (;;) {}
}

This example carries out the same function like the example of the first way
of use, but the address is mentioned through variable val which is defined
in the eeprom.

There is also the possibility to put an array in
the eeprom and read again:

example:

/* This program creates an array on the eeprom and
writes different values into the array.
Afterwards the val[4] is read and written to PORTB

10/00 Leitner Harald*/

#include <io.h>
#include <eeprom.h>

int main(void)
{
/* That's the way to define an array on the eeprom */
static uint8_t val[5] __attribute__((section(".eeprom")));

uint8_t val2;

outp(0xFF,DDRB);

eprom_wb ((uint8_t)&val[0], 0xAA); /* writing the val[0] */
eeprom_wb ((uint8_t)&val[1], 0xBB); /* writing the val[1] */
eeprom_wb ((uint8_t)&val[2], 0xCC); /* writing the val[2] */
eeprom_wb ((uint8_t)&val[3], 0xDD); /* writing the val[3] */
eeprom_wb ((uint8_t)&val[4], 0x00); /* writing the val[4] */

val2 = eeprom_rb((uint8_t)&val[4]); /* reading of val[4] */

outp(val2,PORTB);

for (;;) {}
}
In this example an array field is defined with 5 values. The fields of the
arrays get values one after the other and afterwards the whole string is
read. In that way the indicator is sent back to the value array as a result.

How to copy an array from the eeprom to the SRAM?

Example:

/* This program creates an array eepromval
on the eeprom and writes different
values into the array.
Then the whole array is copied to the SRAM
array sramval
Afterwards the sramval[3] is read and
written to PORTB.

10/00 Leitner Harald*/

#include <io.h>
#include <eeprom.h>

int main(void)
{

/* That's the way to define an array on the eeprom */
static uint8_t eepromval[5] __attribute__((section(".eeprom")));

uint8_t ramval[5];

outp(0xFF,DDRB);

eeprom_wb ((uint8_t)&eepromval[0], 0x1); /* writing the eepromval[0] */
eeprom_wb ((uint8_t)&eepromval[1], 0x2); /* writing the eepromval[1] */
eeprom_wb ((uint8_t)&eepromval[2], 0x3); /* writing the eepromval[2] */
eeprom_wb ((uint8_t)&eepromval[3], 0x4); /* writing the eepromval[3] */
eeprom_wb ((uint8_t)&eepromval[4], 0x5); /* writing the eepromval[4] */

/* copy eepromval to ramval - length is 5 */
eeprom_read_block(&ramval,(uint8_t)&eepromval,5);

outp(ramval[3],PORTB);
for (;;) {}
}

With this function eeprom_read_block, whole blocks that are memorized in
the eeprom can be memorized into the SRAM.

For this you only need a starting address in the eeprom and the aim and
the length of the blocks to copy.

Programming I/O registers and using Ports:

1. How to use I/O registers:

The peripherie that is used in AVR processor series is implemented
through I/O registers. Because of that new values can not be fixed
through simple allocations (impossible: PORTB = 0xFF).
In order to work with these I/O registers you need special approaching
operations, that are defined in the include file <iomacros.h> through
assembler instructions.
Instead of <iomacros.h> the include file <io.h> should be included.
These I/O registers are so called “special function registers” (SFR) and
are pre-defined in the processor specific file (for the AT90S8535:
<io8535.h>).
These registers are called through a fix address.

• BV(x):

In the processor specific file (for example: <io8535.h> the register bit
names are defined through their bit number (0-7) in the correct register (
for instance: the constante PINA6 is the 6th bit of PORTA and is of the
value 6)
One needs function BV (x) in order to come from the bit´s location to the
correct value with which the register has to be loaded.(so BV (PINA6)
creates as a return value 64 2^6)

example:

char result = BV(PINA6);

result is now of the value 64

• void sbi (uint8_t port, uint8_t bit):

With this instruction you can set particular bits in the given register. The
other bits stay the same.

examples:

sbi (PORTB, 3);
sbi (PORTB, PINA3);

Both functions set the 3rd bit of register PORTB.

• void cbi (uint8_t port, uint8_t bit):

With this instruction you can delete particular bits in the given register.

examples:

cbi (PORTB,3);
cbi (PORTB, PINB3);

Both functions delete the 3rd bit of register PORTB.

• uint8_t bit_is_set (uint8_t port, uint8_t bit);

This function checks the bit at the place bit in the register port.
In case the bit is set this function has as a result 1, otherwise 0.
This function can be used as a check for loops or if statements.

example:

uint8_t result = bit_is_set (PORTB, PINB3);

result = 1 if the 3rd bit of PORTB is set
result = 0 ,otherwise.

• uint8_t bit_is_clear (uint8_t port, uint8_t bit);

This function checks the bit at the place bit in the register port.
In case the bit is not set this function has as a result 1, otherwise 0.
This function can be used as a check for loops or if statements.

example:

uint8_t result = bit_is_clear (PORTB, PINB3);

result = 1 if the 3rd bit of PORTB is not set
result = 0 ,otherwise.

• uint8_t inp (uint8_t port):

With this function you can read and return a 8 bit value out of the
mentioned register.

example:

uint8_t res = inp (SREG);

Read the statue register SREG and put the value in the variable res.

• uint16_t __inw (uint8_t port):

With this function you can read a 16 bit value out of the mentioned 16 bit
register and bring it back. These registers are ADC, ICR1, OCR1A,
OCR1B, TCNT1 (for processor AT90S8535) and must be read in a
special range in order to obtain a correct 16 bit value.
With this function it is possible that an interrupt is carried out during the
reading process.

example:

uint16_t res = __inw (TCNT1);

Read register TCNT1 and put the value into the variable res.

• uint16_t __inw_atomic (uint8_t port):

These functions work like __inw but an interrupt is not possible.
In this function __inw_atomic an assembler instruction (“cli”) is integrated
that deletes the I-bit (global interrupt enable) of the status register.

• outp (uint8_t val, uint8_t port):

With this function you can write the 8 bit value val into register port.

example:

outp(0xFF, PORTB);

This instruction writes the value $FF into register PORTB.

• __outw (uint16_t val, uint8_t port):

With this function a 16 bit value can be written into the register port. This
is for initialising of the following registers: ADC, ICR1, OCR1A, OCR1B,
TCNT1 (for processor AT90S8535)
With this function it is possible that an interrupt is carried out during the
writing process.

example:

__outw (0xAAAA, OCR1A);

The 16 bit register OCR1A (output compare register A of timer 1) is
initialised with value $AAAA.

• __outw_atomic (uint16_t val, uint8_t port):

This function works like __outw but an interrupt is not possible.
In this function __outw_atomic an assembler instruction (“cli”) is
integrated that deletes the I-bit (global interrupt enable) in the status
register.

2. How to use Ports:

All AVR ports have true “read-modify-write” functionality when used as
general digital I/O ports. This means that the direction of one port pin can
be changed without unintentionally changing the direction of any other
pin with the sbi (uint8_t port, uint8_t bit) and the cbi (uint8_t port, uint8_t
bit)instructions.
Each ports consist of three registers.

registers:

• DDRX:

This is the Data Direction Register of port X (instead of X use the right
port character – for example DDRA is the register for Port A).
If you set this register to $FF the whole Port X is defined as output and if
the register loaded with $00 the whole Port X is defined as input.
You can set or clear only some pins with the instructions sbi (uint8_t port,
uint8_t bit) and cbi (uint8_t port, uint8_t bit).

example:

outp (0xF0, DDRB);

This instruction sets pin 0-3 of PORTB as input and pin 4-7 as output.

• PORTX:

This is the data register of PORTX (X stands for A, B, C or D).
If you want to put data to the port or read data from the port you have to
use this register.

example:

outp (0xAA, PORTB);

This instruction loads the data register of PORTB with the value $AA.
In this case PORTB is used as output, so you have to initialize PORTB
as output ($FF -> DDRB).

char res = inp (PORTB);

This instruction loads the value of the data register of PORTB into the
variable res. In this case PORTB is used as input, so you have to
initialize PORTB as input ($00 -> DDRB).

• PINX:

PINX (X stands for A, B, C or D) is the input pin address of PORTX and
is no register. When reading PORTX the PORTX data latch is read, and
when reading PINX, the logical values present on the pins are read. The
PORTX input pins are of the state “read only”, while the data register
(PORTX) and the data direction register (DDRX) are of the state
“read/write”.

example:

outp(0x00,DDRA);
res = inp(PINA);

With this instructions you can read the physical value of PORTA.

• Alternate functions:

Most of the ports have alternate functions.
Here several pins are used as an entry for the peripherie that is situated
in the processor.
These entries of the processor are allocated differently in the Atmel
AVR series.

example:

AT90S8535:
pin 0 of PORTB -> external counter input for timer/counter T0

Interruptprogramming with the GNU-C compiler

Interrupts are used when you have to react fast to special incidents.
These incidents are actuated either through the internal pheripherie or
through external signals. During the running program an interrupt routine
is called in order to analyse these incidents.
There the interrupt is processed and jumped back to the place where the
program has been left before.
That an interrupt is licensed different bits have to be set in the suitable
registers of the peripherie and the status register.
For the use of the interrupt functions include the files <interrupt.h> and
<signal.h>.

<signal.h> includes possible interrupt names that have to be mentioned
when they are used.

Signal names:

External interrupt0 function name:
SIG_INTERRUPT0

External interrupt1 function name:
SIG_INTERRUPT1

External interrupt2 function name (ATmega):
SIG_INTERRUPT2

External interrupt3 function name (ATmega[16]03)
SIG_INTERRUPT3

External interrupt4 function name (ATmega[16]03):
SIG_INTERRUPT4

External interrupt5 function name (ATmega[16]03):
SIG_INTERRUPT5

External interrupt6 function name (ATmega[16]03):
SIG_INTERRUPT6

External interrupt7 function name (ATmega[16]03):
SIG_INTERRUPT7

Output compare2 interrupt function name:
SIG_OUTPUT_COMPARE2

Overflow2 interrupt function name:
SIG_OVERFLOW2

Input capture1 interrupt function name:
SIG_INPUT_CAPTURE1

Output compare1(A) interrupt function name:
SIG_OUTPUT_COMPARE1A

Output compare1B interrupt function name:
SIG_OUTPUT_COMPARE1B

Overflow1 interrupt function name:
SIG_OVERFLOW1

Output compare0 interrupt function name:
SIG_OUTPUT_COMPARE0

Overflow0 interrupt function name:
SIG_OVERFLOW0

SPI interrupt function name:
SIG_SPI

UART(0) receive complete interrupt function name:
SIG_UART_RECV

UART1 Receive complete interrupt function name (ATmega161):
SIG_UART1_RECV

UART(0) Data register empty interrupt function name:
SIG_UART_DATA

UART1 Data register empty interrupt function name (ATmega161):
SIG_UART1_DATA

UART(0) Transmit complete interrupt function name:
SIG_UART_TRANS

UART1 Transmit complete interrupt function name (ATmega161):
SIG_UART1_TRANS

ADC Conversion complete:
SIG_ADC

Eeprom ready:
SIG_EEPROM

Analog comparator interrupt function name:
SIG_COMPARATOR

The structure of the routine:

For the definition of such an interrupt routine you need to write the
keyword „SIGNAL“ or „INTERRUPT“.

SIGNAL (SIG_NAME)
{
Here the instructions of the interrupt routine are processed.
}

The interrupt routine with the keyword SIGNAL is executed with disabled
interrupts.

Or:
INTERRUPT (SIG_NAME)
{
Here the instructions of the interrupt routine are processed.
}

The interrupt routine with the keyword INTERRUPT is executed with
enabled interrupts.

Functionens of <interrupt.h>:

Sei():

This function sets the I-bit in the status register and therefore enables
interrupts.
The individual interrupt enable control is then performed in separate
control registers.

Cli():

Deletes the I-bit in the status register and therefore avoids possible
interrutps.

enable_external_int (unsiged char ints):

This function sets suitable bits in the GIMSK register (Mega series:
EIMSK) in order to enable external interrupts.

example:

/*
Turn on leds with switch on PD3 (Int1)
Turn off leds with switch on PD2 (Int0)

10/00 Leitner Harald
*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

SIGNAL (SIG_INTERRUPT0) /* PD2 */
{

outp(0xFF, PORTB); /* turn off leds */

}

SIGNAL (SIG_INTERRUPT1) /* PD3 */
{

outp(0x00, PORTB); /* turn on leds */

}

int main(void)
{

/* define PortB as Output (Leds) and PortD as Input (Switches) */
outp(0xFF, DDRB);
outp(0x00, DDRD);

/* enable interrupt Int0 and Int1 */
outp((1<<INT0)|(1<<INT1), GIMSK);

/* falling edge on Int0 or Int1 generates an interrupt */
outp((1<<ISC01)|(1<<ISC11), MCUCR);

sei();
for (;;){}

}

This program switches through switch on PORTD.2 and PORTD.3 the
leds on and off. The stiches are connected through interrupt entrances
INT0 (PORTD.2) and INT1 (PORTD.3).
Therefore an interrupt control is possible.
First the bits INT0 (bit6) and INT1 (bit7) have to be set in the GIMSK
register. Afterwards in the MCUCR register is adjusted to witch signal an
interrupt has to be released. For each interrupt 2 bits have to be set.

ISC00 (bit0) , ISC01 (bit1) ... Interrupt 0
ISC10 (bit2) , ISC11 (bit3) ... Interrupt 1

ISCX1 ISCX0 description

0 0 the low level of INTX generates an interrupt
0 1 reserved
1 0 the falling edge of INTX generates an

interrupt
1 1 the rising edge of INTX generates an

interrupt

How to use Timer / Counter 0 ?

General information:

Timer0 is a 8 bit timer/counter which can count from 0 to $FF. In the timer
mode this peripherie uses an internal clock signal and in the counter mode
an external signal on PORTB.0.
I take both mode of operation into consideration.
Besides the timer can be operated either in the polling mode or in the
interrupt mode.

Used registers:

Timer registers:
TCCR0 (Timer/Counter 0 Control Register)
TCNT0 (Timer/Counter 0 Value)

Interrupt registers:
TIFR (Timer Interrupt Flag Register)
TIMSK (Timer Interrupt Mask Register)
GIMSK (General Interrupt Mask Register)

Timer mode:

In this mode of operation the timer is provided by an internal signal.
Whereas after each clock cycle the value of the TCNT0 register is
increased by one.This clock signal is produced out of x times the amount of
the oscillator signal. The factor x can have the following values:
1, 8, 64, 256, 1024
(for example: 1024 - the timer is increased after 1024 cycles of the
oscillator signal)
This prescaling is controlled by writing one of the following values into
the register TCCR0:

initial value used frequency
1 ck
2 ck/8
3 ck/64
4 ck/256
5 ck/1024

Polling mode:

Example:

/*

Testprogramm for Timer/Counter 0 in the Polling Mode
If the Timer has an overflow the overlow bit in the TIFR register
will be set and the led variable increased.
The led variable will be written to the PORTB.

Leitner Harald
07/00

*/

#include <io.h>

uint8_t led;
uint8_t state;

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */

outp(0, TCNT0); /* start value of T/C0 */
outp(5, TCCR0); /* prescale ck/1024 */

led = 0;

for (;;)

{

do /* this while-loop checks the overflow bit in the
TIFR register */

state = inp(TIFR) & 0x01;

while (state != 0x01);

outp(~led,PORTB);

led++;

if (led==255)
led=0;

outp((1<<TOV0),TIFR); /* if a 1 is written to the TOV0 bit the
TOV0 bit will be cleared */

}
}

In that way the register TCCR0 is loaded with 5 (ck/1024)
and the starting value of the timer in the register TCNT0 is laid
down with 0.

After each 1024th cycle of the oscillator the value of TCNT0 is increased by
one. The for(;;){} defines an endless loop.
In this loop a do-while loop is inserted, that constantly checks, if the bit at
the place 0 of the TIFR register is set or not.
This bit has the name TOV0 (timer overflow 0) and is set when the 8 bit
register TCNT0 is of the value $FF and tries to increase it -> overflow.
In this case the do-while loop is left and the bontent of the variable led is
written on PORTB.
Afterwards the variable led is increased by one and checks if led is of the
value $FF. In this case led is fixed to 0. Otherwise you have to write a one
into register TIFR, which has as a consequence that the TOV0 is deleted
and the timer starts counting from the beginning.

Interrupt mode:

This mode of operation is used more often than the polling mode. In this
case the TOV0 bit isn't constantly proved if it was set.
Because in case of an overflow the controller jumps from the actual position
to the suitable interrupt vector address.
The interrupt is called from this vector address.
After this execussion the program goes on the place, where it was
interrupted.

Example:

/*

Test program for Timer/Counter 0 in the Interrupt Mode
Every time the Timer starts an interrupt routine the led variable
is written on the PORTB and increased one time.

Leitner Harald
07/00

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW0)
{

outp(~led, PORTB); /* write value of led on PORTB */

led++;

if (led==255)
led = 0;

outp(0,TCNT0); /* reload timer with initial value */

}

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */

outp((1<<TOIE0), TIMSK); /* enables the T/C0 overflow interrupt in
the T/C interrupt mask register for */

outp(0, TCNT0); /* start value of T/C0 */

outp(5, TCCR0); /* prescale ck/1024 */

led = 0;

sei(); /* set global interrupt enable */

for (;;){}
}

The interrupt routine is introduced trough the keyword SIGNAL.
As soon as an overflow occurs, this interrupt routine is carried out.
In the main program you have to fix the bits that enable the interrupt.
In the register TIMSK you have to set the bit TOIE0 and through the
command sei() the i-bit (global interrupt enable) is enabled in the status
register (SREG).

Counter mode:

In this mode of operation the statue changes on the pin T0 are counted.
Instead of the manual operation of entrance T0, a supply trough a
frequency generator is equally possible.
Following program counts the status changes on pin T0 and increase the
value of the counter register TCNT0 by one.
One has to pay attention that the pin T0 is situated on PORTB.
Therefore pin 0 of PORTB has to be defined as an input and all
others as an output.
The next step is the definition of the right mode of operation.
The value $6 has to be written into the register TCCR0.
Now the timer/counter is configurated as a counter of falling edges
to pin T0.

Polling mode:

Example:

/*

Test program for Counter 0 in the Polling Mode
If the Counter has an overflow the overlow bit in the TIFR register
will be set and the led variable increased.
The led variable will be written to the PORTB.

Leitner Harald
07/00

*/

#include <io.h>

uint8_t led;
uint8_t state;

int main(void)
{

outp(0xFE, DDRB); /* use pin 1-7 of PORTB as output
and pin 0 (T0) as input */

outp(0xFE, TCNT0); /* start value of counter */

outp(6, TCCR0); /* init the T/C as counter triggered by
falling edge on T0 */

led = 2;

for (;;)
{

do /* this while-loop checks the overflow bit
in the TIFR register */

state = inp(TIFR) & 0x01;

while (state != 0x01);

outp(0xFE, TCNT0); /* start value of counter */

outp(~led,PORTB);

led++;

if (led==255)

led=0;

outp((1<<TOV0),TIFR); /* if a 1 is written to the TOV0 bit
the TOV0 bit will be cleared */

}
}

Interrupt mode:

/*

Test program for Counter 0 in the Interrupt Mode
Every time a falling edge is set on the T0 input
the counter is increased for one time.

Leitner Harald
07/00

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW0)
{

outp(~led, PORTB); /* write value of led on PORTB */

led++;

if (led==255)

led = 2;

outp(0xFE,TCNT0); /* reload counter with initial value */

}

int main(void)
{

outp(0xFE, DDRB); /* use all pins on PORTB for output */

outp((1<<TOIE0), TIMSK); /* enables the T/C0 overflow interrupt in

the T/C interrupt mask register for */

outp(0xFE, TCNT0); /* start value of counter */

outp(6, TCCR0); /* init the T/C as a counter falling edge
on Pin T0 */

led = 0;

sei(); /* set global interrupt enable */

for (;;){}
}

How to use Timer / Counter 1 ?

General information

In contrast to timer 0 or timer 2, timer 1 is a 16 bit timer/counter. Because
of that you can use it for longer counter procedures. The counting extent
is between $0000 and $FFFF. This area is being realised through two
registers. Otherwise Timer 1 possesses compare/capture and a PWM.

Used registers:

Timer registers:
TCCR1A (Timer/Counter Control Register A)
TCCR1B (Timer/Counter Control Register B)
TCCR1L (Timer/Counter Value Low Byte)
TCCR1H (Timer/Counter Value High Byte)
OCR1AL (Output Compare Register A Low Byte)
OCR1AH (Output Compare Register A High Byte)
OCR1BL (Output Compare Register B Low Byte)
OCR1BH (Output Compare Register B High Byte)
ICR1L (Input Capture Register Low Byte)
ICR1H (Input Capture Register High Byte)

Interrupt registers:
TIFR (Timer Interrupt Flag Register)
TIMSK (Timer Interrupt Mask Register)
GIMSK (General Interrupt Mask Register)

Timer mode:

In this mode of operation the timer is supplied by an internal signal. After
each takt cycle the meter reading is increased by 1. This signal is
produced by a n times the amount of the oscillator signal. The factor x
can have the following result:
1,8,64,256,1024
(for instance: 1024- only after 1024 cycles of the oscillators the timer is
raised- the frequency is only fosc/1024)
This results can be set with register TCCR1B.
The timer is adjusted through writing the following results into the register

initial value used frequency
1 ck
2 ck/8
3 ck/64
4 ck/256
5 ck/1024

Polling mode:

Example:

/*

Test program for Timer/Counter 1 in the Polling Mode
If the Timer has an overflow the overflow bit of the TIFR register
is set and the led variable increased.
The led variable is then written to PORTB.

Leitner Harald
07/00

*/

#include <io.h>

uint8_t led;
uint8_t state;

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */

outp(0x00, TCNT1L); /* start value of T/C1 - low byte */
outp(0x00, TCNT1H); /* start value of T/C1 – highbyte*/
outp(0, TCCR1A); /* T/C1 in timer mode */
outp(1, TCCR1B); /* prescale ck */

led = 0;

for (;;)
{
do /* this while-loop checks the overflow bit in

the TIFR register */
 state = inp(TIFR) & 0x04;

while (state != 0x04);

outp(~led,PORTB);

led++;

if (led==255)
led=0;

outp(0x00, TCNT1L); /* start value of T/C1 - low byte */
outp(0x00, TCNT1H); /* start value of T/C1 - high byte*/

outp((1<<TOV1),TIFR); /* if a 1 is written to the TOV1
bit the TOV1 bit will be cleared */

}
}

The TCCR1A register is established with 0 the TCCR1B register with 1
(CK-one prescale) and the starting value of the registers TCNT1L and
TCNT1H with 0.
After each cycle of the quartz oscillators the meter reading of the
TCNT1L register is increased by 1. After reaching the value $FF in
register TCNT1L and renewed increasing the register, TCNT1H is
increased by 1 and TCNT1L is placed to 0.
There is a do-while loop addeded, which constantly controlls if the bit is
in position 4 of the TIFR register or not. This register is called TOV1
(time overflow1) and is established if both 8 bit registers (TCNT1L,
TCNT1H) are of the same value $FF and if it is tried to raise the value-
overflow.
In this case the do-while loop is left and the content of the variable led is
written on PORTB.
Afterwards the variable led is increased by one and it must be prooved if
led is of the value 255($FF). If this is the case led is put to 0.
Otherwise one is written in position 4 of the register TIFR, which has the
consequence that TOV1 bit is deleted and the timer has to begin to count
once again.

Interrupt mode:

This mode of operation is used more frequently than polling. The TOV1
bit is not always controlled if it has been put. Because if there is an
overflow the appropriate vector address is mentioned. The interrupt
routine is called up of this vector address.
After the work of this routine the programm goes at the point where it
was interrupted.

Example:

/*

Test program for Timer/Counter 1 in the Interrupt Mode
Every time the Timer starts an interrupt routine the led variable
is written on the PORTB and increased one time.

Leitner Harald
07/00

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW1)
{

outp(~led, PORTB); /* write value of led on PORTB */

led++;
if (led==255)

led = 0;

outp(0,TCNT1L); /* reload timer with initial value */
outp(0XFF, TCNT1H);

}

int main(void)
{

outp(0xFF, DDRB); /* use all pins on port B for output */

outp((1<<TOIE1), TIMSK); /* enables the T/C1 overflow interrupt in the
T/C interrupt mask register f

outp(0xFF, TCNT1H); /* start value of T/C1 */

outp(0, TCNT1L);

outp(0, TCCR1A); /* no compare/capture/pwm mode */

outp(5, TCCR1B); /* prescale ck/1024 */

led = 0;

sei(); /* set global interrupt enable */

for (;;){}

}

The interrupt routine is introduced through the keyword SIGNAL. As
soon as an overflow occurs the routine is carried out. In the main
program necessary interrupts must be enabled.
In register TIMSK the bit TOIE1 has to be set and through the instruction
the I-bit in the status register is enabled.
In all other cases the timer is initialised like in the polling mode.

Counter mode:

In this mode of operation the changes of the statue are counted on the
external pin T1. In case of an overflow an interrupt routine is called up.
Instead of the manual handling of entry T1, a supply through a frequency
generator is equally possible.

The program is in the most parts equal to that of timer0. One should pay
attention that pin T1 is situated at PORTB. Because of that one has to
define Pin1 of PORTB as an entry and all the others as an outlet. The
next step is the determination of the suitable mode of operation. For that
the value $6 is written into register TCCR1B. Now the timer/counter is
configurated to pin T1 as a counter of falling edges.

Compare mode:

The Timer/Counter 1 supports two output compare functions using the
registers OCR1A (low and high byte) and OCR1B (low and high byte) as
the data sources to be compared to the content of the Timer/Counter
register TCNT1 (low and high byte). If there is a compare match it is
possible to clear the content of the Timer/Counter register (only if
compare with OCR1A) or take effects on the output pins.
This pins are called OC1A (PORTD.5) and OC1B (PORTD.4).

The different functions are controlled by the register TCCR1A as follows:
Bit 0-3: not used
Bit 4: COM1B0
Bit 5: COM1B1
Bit 6: COM1A0
Bit 7: COM1A1

Mode Select:
COM1X1 COM1X0 Description
0 0 T/C 1 disconnected from pin OC1X
0 1 Toggle the value of OC1X
1 0 Clear OC1X
1 1 Set OC1X

The CS10, CS11 and the CS12 bit (bit0-2) of register TCCR1B defines
the prescalling source of Timer/Counter 1 as follows:

CS12 CS11 CS10 Description
0 0 0 T/C 1 stopped
0 0 1 CK
0 1 0 CK/8
0 1 1 CK/64
1 0 0 CK/256
1 0 1 CK/1024
1 1 0 clocked by the pin T1, falling edge
1 1 1 clocked by the pin T1, rising edge

If you want to clear the content of Timer/Counter 1 on a compareA
match, it is necessary to set bit3 in the register TCCR1B.

In a compare match the suitable bit (OCIE1A -> bit4, OCIE1B -> bit3) is
set in the TIMSK register or the interrupt routine
(SIG_OUTPUT_COMPARE1A, SIG_OUTPUT_COMPARE1B)
is carried out.

example:

/*

Flashes LED on STK200 Board with Compare - Mode of Timer 1
Pulse width is regulated by switch PD2 and PD3 (Int0 Int1)

07/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t delay;

SIGNAL (SIG_OUTPUT_COMPARE1A)/* Compare interrupt routine */
{

if (delay == 0)
outp(0XFF, PORTB);

else
outp(0XFE, PORTB);

}

SIGNAL (SIG_OVERFLOW1)/* T/C1 overflow interrupt routine */
{

if (delay == 0)
outp(0XFF, PORTB);

else
outp(0XFF, PORTB);

outp(0XFF, PORTB);
outp(delay,TCNT1H);
outp(0,TCNT1L);

}

SIGNAL (SIG_INTERRUPT0) /* PD2 */
{

if (delay < 15)
delay = 0;

else delay = delay - 15;

}

SIGNAL (SIG_INTERRUPT1) /* PD3 */
{

if (delay > 235)
delay = 250;

else delay = delay + 15;

}

int main(void)
{

outp(0xFF, DDRB); /* define PORTB as Output (Leds) and
PORTD as Input (Switches) */

outp(0x00, DDRD);

delay = 120; /* default of timer1 high byte */

/* Switches PB3,PB4 for Interrupt 0 and 1 */
outp((1<<TOIE1)|(1<<OCIE1A), TIMSK);

outp((1<<INT0)|(1<<INT1), GIMSK);

outp((1<<ISC01)|(1<<ISC10)|(1<<ISC11), MCUCR);

outp(delay, TCNT1H); /* Init T1 */

outp(0, TCNT1L);

outp(0XFF, OCR1AH); /* Compare value of T1 */
outp(0X10, OCR1AL);

outp(0, TCCR1A); /* Timer mode with no output */
outp(1, TCCR1B); /* counting with ck */

sei();

for (;;){}

}

This program shows a possible use of the compare function. The timer is
initialized in the main program. To controll the delay of the compare
mode there are two switches PD2 and PD3 on the STK 200 board.
A variable delay is decreased by 15 when using PD2 and when using
PD3 increased by 15.
This value delay is loaded into the high-byte of the timer/counter register.
Out of this value the timer tries to reach the overflow.
Before it can reach an overflow a compare match occurs and the suitable
interrupt routine is called up.
Because of this routine a led on the board flashes.
Afterwards the timer runs to an overflow and carries out the overflow
interrupt routine. The led is switched off again and the timer new is
initialised with the value delay.

Capture mode:

This mode of operation enables to memorize the actual value of
Timer/Counter 1 through an external signal.
When the rising or falling edge of the signal at the input capture pin ICP
(PORTD.6) is detected, the current value of Timer/Counter 1 is
transfered to the 16bit input capture register ICR1 (ICR1L, ICR1H).
This sets the input capture flag ICF1 and is possible to call up a interrupt
routine (SIG_INPUT_CAPTURE) if the bit TICIE1 (bit5 of TIMSK) is set.
The most important thing is that you have to read the low byte (ICR1L),
for a full 16bit register read, first.

example:

/*

Flashes LED on STK200 Board with Capture - Mode of Timer 1
With each capture signal on PORTD.6 the actual value of timer 1
(high byte) is written at PORTB.

07/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

SIGNAL (SIG_OVERFLOW1)
{

outp(0,TCNT1H); /* reset timer after overflow */
outp(0,TCNT1L);

}

SIGNAL (SIG_INPUT_CAPTURE1)
{

outp(~inp(ICR1L),PORTB);
/* reading timer value of capture register */

outp(~inp(ICR1H),PORTB); /* and write to PORTB */
}

int main(void)
{

outp(0xFF, DDRB); /* define PORTB as Output (Leds) and */

outp(0x00, DDRD); /* PORTD as Input (Switches) */

outp(0xFF, PORTB);

/* Enable interrupt for capture and overflow */
outp((1<<TICIE1)|(1<<TOIE1), TIMSK);

outp(0, TCNT1H); /* Init T1 */
outp(0, TCNT1L);

outp(0, TCCR1A); /* Timer mode with no output */
outp(5, TCCR1B); /* counting with ck/1024 */

sei();

for (;;){}

}

This program reads the actual value of Timer/Counter 1 after a signal
has occured on the pin ICP.
Then the high-byte of this value is written to the Leds on PORTB.

PWM mode:

When the PWM (PulseWidthModulation) mode is selected the
Timer/Counter 1 can be used as an 8,9 or 10bit, free running PWM.
Timer/Counter 1 acts as an up/down counter that is counting up from
$0000 to the selected top (8bit -> $00FF, 9bit -> $01FF, 10bit -> $03FF),
where it turns and counts down to $0000 and repeats this cycle
endlessly. When the counter value matches the content of the compare
register (OCR1A, OCR1B) it has an effect on the output pins OCA1 and
OCB1 as follows:

COM1X1 COM1X0 Effect on OCX1
0 0 no
0 1 no
1 0 cleared on compare match,

up-counting, set on compare
match, down-counting

1 1 cleared on compare match,
down-counting, set on compare
match, up-counting

These bits are set in the register TCCR1A.
(COM1A1 -> bit7, COM1A0 -> bit6, COM1B1 -> bit5, COM1B0 -> bit4)
The right PWM mode is selected bits PWM10 (bit0 of TCCR1A) and
PWM11 (bit1 of TCCR1A) as follows:

PWM11 PWM10 Description
0 0 PWM mode disabled
0 1 8bit PWM
1 0 9bit PWM
1 1 10bit PWM

example:

/*

Testprogramm for Timer/Counter 1 PWM Mode 10bit
The T/C is used as a free running 10bit-PWM.
The T/C is counting from $00 up to $3FF and after
reaching $3FF the T/C is counting down to $00.
This cycle repeats endless.
When the counter value matches the content of the output
compare register during counting up, PD5(OC1A) pin is cleared
and if matches while counting down the PD5(OC1A) is set.

When the counter value matches the content of the output
compare register during counting up, PD4(OC1B) pin is set
and if matches while counting down the PD4(OC1B) is cleared.

Leitner Harald
07/00

*/

#include <io.h>

int main(void)
{

outp(0xFF, DDRD); /* use all pins on port D for output */
outp(0xB3, TCCR1A); /* init the counter */
outp(0x5, TCCR1B); /* init the counter */
outp(0x00, TCNT1L); /* value of T/C1L */
outp(0x00, TCNT1H); /* value of T/C1L */
outp(0xFF, OCR1AL); /* value of Compare register A Low-Byte */
outp(0x00, OCR1AH); /* value of Compare register A High-Byte */
outp(0xFF, OCR1BL); /* value of Compare register B Low-Byte */
outp(0x00, OCR1BH); /* value of Compare register B High-Byte */
for (;;){}
}

This program creates a free running PWM signal on the two outputs
OCA1 and OCB1. The two compare registers OCR1A and OCR1B
define the pulswidth.

Selected Mode:
TCCR1A:

10bit PWM
Com1A1 -> 1, COM1A0 -> 0

Cleared on compare match,
up-counting, set on compare
match, down-counting

Com1B1 -> 1, COM1B0 -> 1
Cleared on compare match,
down-counting, set on compare
match, up-counting

TCCR1B:
prescale: ck/10

How to use Timer 2 ?

General information:

Timer2 is a 8 bit timer that counts from 0 to $FF. In the timer mode this
peripherie uses an internal clock signal. Besides the timer can be operated
either in the polling mode or in the interrupt mode.

Used registers:

Timer registers:
TCCR2 (Timer0 Control Register)
TCNT2 (Timer0 Value)
OCR2 (Output Compare Register of Timer2)
ASSR (Asynchronous Status Register)

Interrupt registers:
TIFR (Timer Interrupt Flag Register)
TIMSK (Timer Interrupt Mask Register)
GIMSK (General Interrupt Mask Register)

Timer mode:

In this mode of operation the timer is provided by an internal signal.
The value of the TCNT2 register is increased by one after each clock cycle.
This clock signal is produced out of x times the amount of the oscillator
signal. The factor x can have the following values:
1, 8, 32, 64, 128, 256, 1024
(for example: 1024 - the timer is increased after 1024 cycles of the
oscillator signal)
This prescaling is controlled by writing one of the following values into
the register TCCR2:

initial value used frequency
1 ck
2 ck/8
3 ck/32
4 ck/64
5 ck/128
6 ck/256
7 ck/1024

Timer2 is no Timer/Counter but only a Timer for internal signals.

Polling mode:

Example:

/*

Test program for Timer/Counter 2 in the Polling Mode
If the Timer has an overflow the overlow bit in the TIFR register
is set and the led variable increased.
Then the variable led is written to PORTB.

Leitner Harald
07/00

*/

#include <io.h>

uint8_t led;
uint8_t state;

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */

outp(0, TCNT2); /* start value of T/C2 */

outp(7, TCCR2); /* prescale ck/1024 */

led = 0;

for (;;)
{

do /* this while-loop checks the overflow bit in the
TIFR register */

state = inp(TIFR) & 0x40;

while (state != 0x40);

outp(~led,PORTB);

led++;

if (led==255)
led=0;

outp((1<<TOV2),TIFR); /* if a 1 is written to the TOV2 bit
the TOV2 bit will be cleared */

}
}

In that way the register TCCR2 is loaded with 7 (ck/1024)
and the starting value of the timer in register TCNT2 is laied
down with 0.

After each 1024th cycle of the oscillator the value of TCNT2 is increased by
one. The for(;;){} defines an endless loop.
In this loop a do-while loop is inserted, that constantly checks, if the bit on
the place 6 of the TIFR register is set or not.
This bit has the name TOV2 (timer overflow 2) and is set when the 8 bit
register TCNT2 is of the value $FF and tries to increase it -> overflow.
In this case the do-while loop is left and the bontent of the variable led is
written on PORTB.
Afterwards the variable led is increased by one and checks if led is of the
value $FF. In this case led is fixed to 0. Otherwise you have to write a one
into register TIFR on position 6 , what has as a consequence that the TOV2
is deleted and the timer starts counting from the beginning.

Interrupt mode:

This mode of operation is used more often than the polling mode. In this
case the TOV2 bit isn't constantly proved if it was set.
Because in case of an overflow the controller jumps from the actual position
to the suitable interrupt vector address.
The interrupt is called from this vector address.
After this execussion the program goes on the place, where it was
interrupted.

Example:

/*

Test program for Timer/Counter 2 in the Interrupt mode
Every time the Timer starts an interrupt routine the led variable
is written on the PORTB and increased one time.

Leitner Harald
07/00

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t led;

SIGNAL (SIG_OVERFLOW2)
{

outp(~led, PORTB); /* write value of led on PORTB */

led++;

if (led==255)
led = 0;

outp(0,TCNT2); /* reload timer with initial value */

}

int main(void)
{

outp(0xFF, DDRB); /* use all pins on PORTB for output */

outp((1<<TOIE2), TIMSK); /* enables the T/C2 overflow interrupt in
the T/C interrupt mask register for */

outp(0, TCNT2); /* start value of T/C2 */

outp(7, TCCR2); /* prescale ck/1024 */

led = 0;

sei(); /* set global interrupt enable */

for (;;){}
}

The interrupt routine is introduced trough the keyword SIGNAL.
As soon as an overflow occurs, this interrupt routine is carried out.
In the main program you have to fix the bits that enable the interrupt.
In the register TIMSK you have to set the bit TOIE2 and through the
command sei() the i-bit (global interrupt enable) is enabled in the status
register (SREG).

Compare mode:

The Timer2 supports one output compare function using the register OCR2
as the data source to be compared to the content of the Timer2 data
register TCNT2. If there is a compare match it is possible to clear the
content of Timer2 data register TCNT2 or to take effect on the output
compare pin OC2 (PORTD.7).

The different functions are controlled by the register TCCR2 in the following
way:

Bit 0-2: used for prescale (CS20 -> bit0, CS21 -> bit1, CS22 -> bit2)
Bit 3: CTC2 (Clear Timer on Compare Match)
Bit 4: COM20
Bit 5: COM21
Bit 6: PWM2
Bit 7: not used

Mode select:

Com21 Com20 Description
0 0 Timer2 disconnected from pin OC2
0 1 Toggle the value of OC2
1 0 Clear OC2
1 1 Set OC2

Bits 0-2 of register TCCR2 defines the prescaling source of timer2 in the
following way:

CS22 CS21 CS22 Description
0 0 0 Timer2 stopped
0 0 1 ck
0 1 0 ck/8
0 1 1 ck /32
1 0 0 ck /64
1 0 1 ck /128
1 1 0 ck /256
1 1 1 ck /1024

If you want to clear the content of timer2 on a compare match it is
necessary to set the CTC2 bit (bit 3) of the TCCR2 register.

On a compare match the bit OCIE2 (bit 7) in the TIMSK register is set or a
interrupt routine is called up (SIG_OUTPUT_COMPARE2).

Example:

/*

Flashes LED on STK200 Board with Compare - Mode of Timer 2
Timer starts with value $10, if the counter register has the same
value as the ocr register the Led will be switched on.
If the timer overflow flag is set the leds will be switched off.

Leitner Harald
07/00

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t delay;

SIGNAL (SIG_OUTPUT_COMPARE2)
{

outp(0X00, PORTB); /* turn on leds on PORTB */

}

SIGNAL (SIG_OVERFLOW2)
{

outp(0XFF, PORTB); /* turn off leds on PORTB */
outp(delay,TCNT2);

}

int main(void)
{

outp(0xFF, DDRB); /* define PORTB as output (leds) */

delay = 0x10;

outp((1<<TOIE2)|(1<<OCIE2), TIMSK); /* enables interrupt of timer */

outp(delay, TCNT2); /* default value of timer */

outp(0x80, OCR2); /* value of compar register */

outp(7, TCCR2); /* selected prescale : ck/1024 */

sei();

for (;;){}

}

This program shows a possibility of using timer2 in the compare-mode.
The timer2 is initialized in the main() function of the program.
Value delay ($10) is the starting value for the register TCNT2 and the value
of the compare register OCR2 is set to $80.
Timer2 counts from $10 to $80. At this point the program calls the interrupt
routine for the compare match up and turns on the leds on PORTB. Then
Timer2 counts until an overflow has occured. Then the interrupt routine for
the overflow is reached and the leds are turned off.
Then the cycle starts counting endlessly from delay ($10).

PWM mode:

When the PWM (Pulse Width Modulation) mode is selected, timer2 is used
as a 8bit free running PWM. Timer2 acts as an up/down counter that is
counting up from $00 to $FF, where it turns and counts down to zero and
repeats this cycle endlessly.
To choose this mode you have to set the bit PWM2 (bit 6) of the register
TCCR2. When the counter value matches the content of the compare
register (OCR2) there will be effects on the output pin OC2 (PORTD.7) in
the following way:

COM21 COM20 Description
0 0 no effects
0 1 no effects
1 0 cleared on compare match, up-counting,

set on compare match, down-counting
1 1 cleared on compare match, down-counting,

set on compare match, up-counting

(COM21 -> bit5 and COM20 -> bit4 of register TCCR2)

This program creates a free running PWM signal on the output pin OC2.
The compare register OCR2 defines the signals form.

Example:

/*
Test program for Timer/Counter 2 PWM Mode
The T/C is used as a free running PWM.
The T/C is counting from $00 up to $FF and after
reaching $FF the T/C is counting down to $00.
Then the cycle repeats.
When the counter value matches the content of the output
compare register during counting up, PD7(OC2) pin is cleared
and if matches while counting down the PD7(OC2) is set.

Leitner Harald
07/00

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

int main(void)
{

outp(0xFF, DDRD); /* use all pins on PORTD for output */

outp(0, TCNT2); /* start value of T/C2 */

outp(0x67, TCCR2); /* init the counter */

outp(0x19, OCR2); /* value of OCR2 */

for (;;){}

}

Selected mode:

Prescale: ck/1024
PWM: COM20 -> 1, COM21 -> 1

UART (Universal Asynchronous Receiver Transmitter)

In order to receive or send data to a computer you need an UART.
This component enables a transfer of data through the seriell interface
and is integrated in the controller.
In the STK200 board the data conductions are directly connected with a
9 pole SUB-D plug.
In order to be connected with the computer you need a seriell cable that
is pinned on a free COM port of the computer and the SUB-D plug of the
board. Besides a program has to be carried out on the computer that
enables a connection through the seriell interface with the controller.

For the programming you need the speed in order to change the data
between the program in the controller and the program in the computer.
Both programms have to be adjusted to the same speed.
There is also the opportunity to connect two controller boards in order to
transfer data.
Possible baud rates are dependent from the used quartz oscillator on the
board and are mentioned in the suitable data sheet of the used
processor. The value of the data sheet has to be loaded into the baud
rate register UBRR. Therefore the UART is initialised with the right
speed.

For example: fosz = 4MHz, Baud rate = 9600
�

 UBRR = 25 (data sheet)

The processor is operated with a 4MHz oscillator and the baud rate of
the uart should be 9600. That necessary value that has to be written into
register UBRR is according to the data sheet 25.

An other way is to calculate the right value with the following formula:

Value of register UBRR = fosc / (baud rate * 16) – 1

The actual data are either written or read into the data register UDR.

A further register USR gives information about the processing of the
written or read data of the data register UDR.

USR - register:

Bit name description

0-2 no no
3 OR OverRun: This bit is set when a character

already presented in the UDR data register
is not read before the next character is
shifted into the receiver shift register.

4 FE FramingError: This bit is set when the stop
bit of an incoming character is zero (Error).

5 UDRE Uart Data Register Empty: This bit is set
when data is transfered from the register
UDR to the shift register.

�
 ready for transmission of new data

6 TXC UART transmission complete:This bit is set
when data is shifted out from the shift
register and no new data is written into
data register UDR.

7 RXC UART receiving complete:This bit is set if
new data is in register UDR.
This bit is cleared by reading the new data
from the UDR register.

The UCR register is the control register of the uart. With this register you
can choose the different modes of operation.

UCR - register:

Bit name description

0 TXB8 9th data bit for transmission, when
CHR9 bit is set.

1 RXB8 9th data bit which has been received, when
CHR9 bit is set.

2 CHR9 9 bit characters: If this bit is set the received
and transmitted charcters are 9bit long.
The 9th bit is in TXB8 for transmission or
when you receive a 9bit character the
9th bit is in RXB8.

3 TXEN Transmitter Enable: If you set this bit the
transmitter is enabled.

4 RXEN Receiver Enable: If you set this bit the
reveicer is enabled.

5 UDRIE Uart Data Register Empty Interrupt Enable:
When this bit is set, a setting of the UDRE
bit in register USR will cause the uart data
register empty interrupt routine to be
executed provided that global interrupts
are enabled.

6 TXCIE UART Transmission Complete Interrupt
Enable: When this bit is set and a
transmission is ready the Interrupt
routine SIG_UART_TRANS will be
executed.

7 RXCIE UART Receiving Complete Interrupt Enable:
When this bit is set and a character has
been received, the Interrupt routine
SIG_UART_RECV will be executed.

Through adjusting these registers new routines for the data exchange
can be created. In this chapter the programming that is controlled by the
interrupt is mentioned.

Transmit mode:

Example:

/*

This program transfers the string a of the program
memory to the uart.

10/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>
#include <progmem.h>

char a[] __attribute__((progmem)) = "This is a test message!";

uint8_t pos=0;

SIGNAL(SIG_UART_TRANS)
{

if (pos++ < 23)
outp(PRG_RDB(&a[pos]), UDR);

}

int main(void)
{

outp((1<<TXCIE)|(1<<TXEN),UCR); /* enable TX interrupt */

outp(25, UBRR); /* init transfer speed */

sei(); /* enable interrupts */

outp(PRG_RDB(&a[pos]), UDR); /* write byte to data buffer */

for(;;){}
}

In this program a character string that is situated in the program memory
is written into the data register UDR step by step and transmittes through
a seriell cable to a reception place.
The baud rate is determined in register UBRR with 9600.
Then the first character of the string is given to the data register UDR. As
soon as the first character has been transmitted, the interrupt routine is
called up and the next character has to be transmitted.
This happens as long as the last character is transmitted.

Receive mode:

Example:

/*

This program receives data from the uart and
shows it through the leds on the PORTB.

10/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

SIGNAL(SIG_UART_RECV)
{

outp(inp(UDR),PORTB); /* read data from uart and
 transfer it to PORTB */
}

int main(void)
{
outp(0Xff,DDRB);
outp((1<<RXCIE)|(1<<RXEN),UCR); /* enable RX interrupt */
outp(25, UBRR); /* init transfer speed */
sei(); /* enable interrupts */
for(;;){}

}

This program transmitts with the speed of 9600baud each character sent
from the computer into the data register UDR. Because of that the
correct interrupt routine is called up and the character is read of the
register UDR.
The ASCII code of the character is shown through the leds on PORTB.

Transmitt / Receive mode:

Example:

/*

This program writes the string1 to the uart.
Then every read data is written to PORTB and
to the uart back.

10/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t STRING1[6] = "Input:";
uint8_t pos=0;

SIGNAL(SIG_UART_TRANS)
{

if (pos++ < 7) /* character of string to uart */
outp(STRING1[pos], UDR);

else
pos = 7;

}

SIGNAL(SIG_UART_RECV)
{
uint8_t recval;

recval = inp (UDR); /* read data from uart buffer */

outp(recval,PORTB); /* write data to PORTB */

outp(recval, UDR); /* write data to uart buffer */

}

int main(void)
{

outp(0xff,DDRB);

 /* init the uart for receiving and transmitting of data */
outp((1<<RXCIE)|(1<<TXCIE)|(1<<RXEN)|(1<<TXEN),UCR);

outp(25, UBRR); /* init speed */

sei(); /* enable interrupts */

outp(STRING1[pos], UDR); /* write 1st byte of string1 to data
buffer */

for(;;){}

}

In this program the UART is used as a receiver and transmitter. At first
the character string „Input:“ is transmitted through the seriell interface.
Afterwards the ASCII code of each received character is shown through
the leds on PORTB. The received character itself is sent back through
the seriell interface.

How to use the Analog/Digital Converter ?

An A/D converter in the controller was integrated for the processing of
analog signals. This A/D converter is able to show analog signals with a
resolution of 10 bit.
The A/D converter works with the procedure of the successive
approximation. In order to process different analog signals, a multiplexer
is placed before the converter. This multiplexer is connected with
PORTA. Therefore it is possible to process a signal about each of the
eight pins on PORTA.
At any time only one of the eight signals can be converted.
Register ADMUX, with the following value, adjusts which of the eight
channels are connected with the A/D converter.

value of ADMUX used channel
0 channel 0
1 channel 1
2 channel 2
3 channel 3
4 channel 4
5 channel 5
6 channel 6
7 channel 7

Besides the A/D converter needs an own tact signal that is between 50
and 200kHz. This signal is produced out of the frequency of the quartz
oscillator. Through the use of a prescale function the needed frequency
for the A/D converter is created. This prescale value is adjusted through
the following three bits ADPS0, ADPS1 and ADPS2 in register ADCSR:

ADPS0 ADPS1 ADPS2 prescale factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

for example:

fosz = 4MHz
50kHz < fad < 200kHz

�
 prescale = 32

fad = fosz/32 = 4000000/32 = 125000 = 125 kHz
50kHz < 125kHz < 200kHz

�
 ADPS0 = 1, ADPS1 = 0, ADPS2 = 1

ADCSR:

bit name description
0 ADPS0 prescale
1 ADPS1 prescale
2 ADPS2 prescale
3 ADIE A/D Interrupt Enable: if set, A/D

conversion complete interrupt
is enabled.

4 ADIF A/D Interrupt Flag: This bit is set,
when a A/D conversion is completet.

5 ADFR A/D Free Run Select: If you set this
bit, the AD converter free operates
in the running mode.

6 ADSC A/D Start Conversion: If you set
this bit and the ADEN bit is set a
Conversion is started.

7 ADEN A/D Enable: To enable the A/D -
converter you have to set this bit.

The A/D converter can be used in two different modes of use:
The first is called „ single conversion“ mode. In this case only one A/D
conversion is carried out. Afterwards the bit ADSC has to be set again
for a new conversion.
The second mode of use is the „ free runn ing“ mode. Here the bit ADFR
has to be set and the conversion with bit ADSC started.
Afterwards a conversion is carried out permanently.

The 10 bit value is written into the data registers ADCL (low byte) and
ADCH (high byte). When reading these registers you have to pay
attention that register ADCL has to be read before ADCH.

Single conversion mode:

Example:

/*

 Analog to digital conversion of value on analog input 0 in single
 conversion mode. Result lo_val is presented on port B (Leds)

 10/00 Leitner Harald
 */

#include <io.h>
#include <interrupt.h>
#include <signal.h>

SIGNAL(SIG_ADC)
{
uint8_t lo_val, hi_val;

lo_val = inp(ADCL); /* read low byte first and then the high byte */

hi_val = inp(ADCH);

outp(lo_val,PORTB); /* write low byte to PORTB */

}

int main(void)

{

outp(0xFF, DDRB); /* define PORTB as Output (Leds) */

outp(0, ADMUX); /* Select Analog input 0*/

/* Enables ADC and start one conversion */
outp((1<<ADEN)|(1<<ADSC)|(1<<ADIF)|(1<<ADIE),ADCSR);

sei();

for (;;){}

}

For this program the A/D converter input zero on PORTA is choosen and
register ADCSR is adjusted to the single conversion mode.
After the first conversion the interrupt routine is carried out and the value
is read out of the data registers. The low byte is shown through the leds
on PORTB.

Free runn ing mode:

Example:

/*

 Analog to digital conversion of value on analog input 0
 in free running mode.

Result is presented on PORTB (Leds)

7/00 Leitner Harald

*/

#include <io.h>
#include <interrupt.h>
#include <signal.h>

uint8_t lo_val, hi_val;

SIGNAL (SIG_ADC)
{

lo_val = inp(ADCL); /* read low byte first */

hi_val = inp(ADCH);

outp(~lo_val, PORTB);

}

int main(void)
{

outp(0xFF, DDRB); /* define PORTB as Output (Leds) */

outp(0, ADMUX); /* Select Analog input 0*/

/* Enables ADC and start conversion in free running interrupt mode */
outp((1<<ADEN)|(1<<ADSC)|(1<<ADFR)|(1<<ADIE), ADCSR);

sei();

for (;;){}

}

This program fulfills the same duty. The converted value is permanently
updated through the free running mode.

Analog Comparator:

The analog comparator compares the voltage on the input AIN0
(PORTB.2) and the input AIN1 (PORTB.3). When the voltage on pin
AIN0 is higher than the voltage on pin AIN1 bit ACO in register ACSR is
set. It is also possible to trigger a separate interrupt. You can select
interrupt triggering on comparator output rising, fall or toggle.
This function is controlled through the bits ACIS0 and ACIS1 in the
following way:

ACIS0 ACIS1 description
0 0 Comparator on output toggle.
0 1 not used
1 0 Comparator interrupt on falling output edge.
1 1 Comparator interrupt on rising output edge

Register ACSR:

bit name description
0 ACIS0 interrupt select
1 ACIS1 interrupt select
2 ACIC Analog Comparator Input Capture Enable:

trigger input capture function of
timer/counter 1

3 ACIE Analog Comparator Interrupt Enable:
When this bit is set interrupt of analog
comparator is enabled.

4 ACI Analog Comparator Interrupt Flag:
This bit is set if a interrupt is executed with
the definition through ACIS0 and ACIS1.
Bit is cleared through writing a one on this
flag or executing the interrupt routine.

5 ACO Analog Comparator Output: Directly from
the comparator.

6 no Reserved
7 ACD Analog Comparator Disable:

If this bit is set the analog comparator is
turned off.

Example:

/*

The Analog Compator executes an interrupt if

the voltage on pin PORTB.2 is higher than the
voltage on PORTB.3.
Then the interrupt routine is started and the
leds on PORTB are turned on.

7/00 Leitner Harald

 */

#include <io.h>
#include <interrupt.h>
#include <signal.h>

SIGNAL(SIG_COMPARATOR)
{

 outp(0xFE,PORTB); /* turn on 1st led on PORTB */

}

int main(void)
{

 outp(0xF3,DDRB); /* pin 2 and 3 PORTB set as input, other output */
 outp(0xFF,PORTB);
 outp((1<<ACIE)|(1<<ACIS1)|(1<<ACIS1),ACSR); /* init comparator */
 sei();
 for (;;){}

}

This program compares both inputs AIN0 and AIN1. The interrupt routine
is carried out if the voltage on AIN0 is bigger than on the input AIN1.
During that the first led on PORTB is turned on.

	Index
	Makefiles
	Integrating assembler instructions
	Variables in the SRAM:
	Variables in the program memory:
	Variables in the eeprom
	I/O registers and Ports
	Interruptprogramming
	How to use Timer / Counter 0 ?
	How to use Timer / Counter 1 ?
	How to use Timer 2 ?
	UART
	Analog/Digital Converter
	Analog Comparator:

