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Introduction 

The HP-15C provides several advanced capabilities never before combined so conveniently 

in a handheld calculator: 

 Finding the roots of equations. 

 Evaluating definite integrals. 

 Calculating with complex numbers. 

 Calculating with matrices. 

The HP-15C Owner's Handbook gives the basic information about performing these 

advanced operations. It also includes numerous examples that show how to use these 

features. The owner's handbook is your primary reference for information about the advanced 

functions. 

This HP-15C Advanced Functions Handbook continues where the owner's handbook leaves 

off. In this handbook you will find information about how the HP-15C performs the 

advanced computations and information that explains how to interpret the results that you 

get. 

This handbook also contains numerous programs, or applications. These programs serve two 

purposes. First, they suggest ways of using the advanced functions, so that you might use 

these capabilities more effectively in your own applications. Second, the programs cover a 

wide range of applications—they may be useful to you in the form presented in this 

handbook. 

Note: The discussions of most topics in this handbook presume that you 

already understand the basic information about using the advanced functions 

and that you are generally familiar with the subject matter being discussed. 
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Section 1: 
Using _ Effectively 

The _ algorithm provides an effective method for finding a root of an equation. This 

section describes the numerical method used by _ and gives practical information 

about using _ in various situations. 

Finding Roots  

In general, no numerical technique can be guaranteed to find a root of every equation that has 

one. Because a finite number of digits are used, the calculated function may differ from the 

theoretical function in certain intervals of x, it may not be possible to represent the roots 

exactly, or it may be impossible to distinguish between zeros and discontinuities of the 

function being used. Because the function can be sampled at only a finite number of places, 

it's also possible to conclude falsely that the equation has no roots. 

Despite these inherent limitations on any numerical method for finding roots, an effective 

method—like that used by _—should strive to meet each of the following objectives: 

 If a real root exists and can be exactly represented by the calculator, it should be 

returned. Note that the calculated function may underflow (and be set to zero) for 

some values of x other than the true roots. 

 If a real root exists, but it can't be exactly represented by the calculator, the value 

returned should differ from the true root only in the last significant digit. 

 If no real root exists, an error message should be displayed. 

The _ algorithm was designed with these objectives in mind. It is also easy to use and 

requires little of the calculator's memory. And because _ in a program can detect the 

situation of not finding a root, your programs can remain entirely automatic regardless of 

whether _ finds a root. 

How _ Samples 

The _ routine uses only five registers of allocatable memory in the HP-15C. The five 

registers hold three sample values (a, b, and c) and two previous function values (f(a) and 

f(b)) while your function subroutine calculates f(c). 

The key to the effectiveness of _ is how the next sample value c is found. 

Normally, _ uses the secant method to select the next value. This method uses the 

values of a, b, f(a), and f(b) to predict a value c where f(c) might be close to zero. 
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If c isn't a root, but f(c) is closer to zero than f(b), then b is relabeled as a, c is relabeled as b, 

and the prediction process is repeated. Provided the graph of f(x) is smooth and provided the 

initial values of a and b are close to a simple root, the secant method rapidly converges to a 

root. 

However, under certain conditions the secant method doesn't suggest a next value that will 

bound the search or move the search closer to the root, such as finding a sign change or a 

smaller function magnitude. In such cases, _ uses a different approach. 

If the calculated secant is nearly horizontal, _ modifies the secant method to ensure 

that |c − b| ≤ 100 |a − b|. This is especially important because it also reduces the tendency for 

the secant method to go astray when rounding error becomes significant near a root. 

 

If _ has already found values a and b such that f(a) and f(b) have opposite signs, it 

modifies the secant method to ensure that c always lies within the interval containing the sign 

change. This guarantees that the search interval decreases with each iteration, eventually 

finding a root. 
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If _ hasn't found a sign change and a sample value c doesn't yield a function value 

with diminished magnitude, then _ fits a parabola through the function values at a, b, 

and c. _ finds the value d at which the parabola has its maximum or minimum, 

relabels d as a, and then continues the search using the secant method. 

_ abandons the search for a root only when three successive parabolic fits yield no 

decrease in the function magnitude or when d = b. Under these conditions, the calculator 

displays Error 8. Because b represents the point with the smallest sampled function 

magnitude, b and f(b) are returned in the X- and Z-registers, respectively. The Y-register 

contains the value of a or c. With this information, you can decide what to do next. You 

might resume the search where it left off, or direct the search elsewhere, or decide that f(b) is 

negligible so that x = b is a root, or transform the equation into another equation easier to 

solve, or conclude that no root exists. 

Handling Troublesome Situations 

The following information is useful for working with problems that could yield misleading 

results. Inaccurate roots are caused by calculated function values that differ from the intended 

function values. You can frequently avoid trouble by knowing how to diagnose inaccuracy 

and reduce it. 

Easy Versus Hard Equations 

The two equations f(x) = 0 and e
f(x)

 − 1 = 0 have the same real roots, yet one is almost always 

much easier to solve numerically than the other. For instance, when f(x) = 6x − x
4
 − 1, the 

first equation is easier. When f(x) = ln(6x − x
4
), the second is easier. The difference lies in 

how the function's graph behaves, particularly in the vicinity of a root. 
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In general, every equation is one of an infinite family of equivalent equations with the same 

real roots. And some of those equations must be easier to solve than others. While _ 

may fail to find a root for one of those equations, it may succeed with another. 

Inaccurate Equations 

_ can't calculate an equation's root incorrectly unless the function is incorrectly 

calculated. The accuracy of your function subroutine affects the accuracy of the root that you 

find. 

You should be aware of conditions that might cause your calculated function value to differ 

from the theoretical value you want it to have. _ can't infer intended values of your 

function. Frequently, you can minimize calculation error by carefully writing your function 

subroutine. 

Equations With Several Roots 

The task of finding all roots of an equation becomes more difficult as the number of roots 

increases. And any roots that cluster closely will usually defy attempts at accurate resolution. 

You can use deflation to eliminate roots, as described in the HP-15C Owner's Handbook. 

An equation with a multiple root is characterized by the function and its first few higher-

order derivatives being zero at the multiple root. When _ finds a double root, the last 

half of its digits may be inaccurate. For a triple root, two-thirds of the root's digits tend to be 

obscured. A quadruple root tends to lose about three-fourths of its digits. 

Using _ With Polynomials 

Polynomials are among the easiest functions to evaluate. That is why they are traditionally 

used to approximate functions that model physical processes or more complex mathematical 

functions. 

A polynomial of degree n can be represented as 

anx
n
 + an−1x

n−1
 + … + a1x + a0 . 
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This function equals zero at no more than n real values of x, called zeros of the polynomial. 

A limit to the number of positive zeros of this function can be determined by counting the 

number of times the signs of the coefficients change as you scan the polynomial from left to 

right. Similarly, a limit to the number of negative zeros can be determined by scanning a new 

function obtained by substituting −x in place of x in the original polynomial. If the actual 

number of real positive or negative zeros is less than its limit, it will differ by an even 

number. (These relationships are known as Descartes' Rule of Signs.) 

As an example, consider the third-degree polynomial function 

f(x) = x
3
 − 3x

2
 − 6x + 8 . 

It can have no more than three real zeros. It has at most two positive real zeros (observe the 

sign changes from the first to second and third to fourth terms) and at most one negative real 

zero (obtained from f(−x) = −x
3
 − 3x

2
 + 6x + 8). 

Polynomial functions are usually evaluated most compactly using nested multiplication. 

(This is sometimes referred to as Horner's method.) As an illustration, the function from the 

previous example can be rewritten as 

f(x) = [(x − 3)x − 6]x + 8 . 

This representation is more easily programmed and more efficiently executed than the 

original form, especially since _ fills the stack with the value of x. 

Example: During the winter of '78, Arctic explorer Jean-Claude Coulerre, isolated at his 

frozen camp in the far north, began scanning the southern horizon in anticipation of the sun's 

reappearance. Coulerre knew that the sun would not be visible to him until early March, 

when it reached a declination of 5° 18'S. On what day and time in March was the chilly 

explorer's vigil rewarded? 

The time in March when the sun reached 5° 18'S declination can be computed by solving the 

following equation for t: 

D = a4t
4
 + a3t

3
 + a2t

2
 + a1t + a0 

Where D is the declination in degrees, t is the time in days from the beginning of the month, 

and 

a4  =    4.2725 × 10
−8 

a3  =  −1.9931 × 10
−5 

a2  =    1.0229 × 10
−3 

a1  =    3.7680 × 10
−1 

a0  =  −8.1806 .
 

This equation is valid for 1 ≤ t < 32, representing March, 1978. 
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First convert 5° 18'S to decimal degrees (press 5.18”|À), obtaining −5.3000 

(using •4 display mode). (Southern latitudes are expressed as negative numbers for 

calculation purposes.) 

The solution to Coulerre's problems is the value of t satisfying 

−5.3000 = a4t
4
 + a3t

3
 + a2t

2
 + a1t + a0. 

Expressed in the form required by _ the equation is 

0 = a4t
4
 + a3t

3
 + a2t

2
 + a1t − 2.8806 

where the last, constant term now incorporates the value of the declination. 

Using Horner's method, the function to be set equal to zero is 

f(t) = (((a4t + a3)t + a2)t + a1)t − 2.8806 . 

To shorten the subroutine, store and recall the constants using the registers corresponding to 

the exponent of t. 

Keystrokes Display  

= -  PrError Clears calculator’s memory.
*
 

−  0.0000  

|¥  000- Program mode. 

´bA  001-42,21,11  

l4  002-   45  4  

*  003-      20  

l3  004-   45  3  

+  005-      40  

*  006-      20  

l2  007-   45  2  

+  008-      40  

*  009-      20  

l1  010-   45  1  

+  011-      40  

*  012-      20  

l 0  013-   45  0  

+  014-      40  

|n  015-   43 32  

 

                                                           

* This step is included here only to ensure that sufficient memory is available for the examples that follow in this handbook. 
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In Run mode, key in the five coefficients: 

Keystrokes Display  

|¥  Run mode. 

4.2725 “8”  4.2725   -08  

O4  4.2725   -08 Coefficient of t
4
. 

1.9931”“ 
5” O3 -1.9931   -05 Coefficient of t

3
. 

1.0229“3”   1.0229   -03  

O2  0.0010 Coefficient of t
2
. 

3.7680“1”   3.7680   -01  

O1  0.3768 Coefficient of t. 

2.8806” O0 -2.8806 Constant term. 

Because the desired solution should be between 1 and 32, key in these values for initial 

estimates. Then use _ to find the roots. 

Keystrokes Display  

1v  1.0000  

32  32 Initial Estimates. 

´_A  7.5137 Root found. 

)  7.5137 Same previous estimate. 

)  0.0000 Function value. 

|(|(  7.5137 Restores stack. 

The day was March 7th. Convert the fractional portion of the number to decimal hours and 

then to hours, minutes, and seconds. 

Keystrokes Display  

´ q  0.5137 Fractional portion of day. 

24*  12.3293 Decimal hours. 

´ h  12.1945 Hours, minutes, seconds. 

Explorer Coulerre should expect to see the sun on March 7th at 12
h
 19

m
 45

s
 (Coordinated 

Universal Time). 

By examining Coulerre's function f(t), you realize that it can have as many as four real 

roots—three positive and one negative. Try to find additional positive roots by using _ 

with larger positive estimates. 

Keystrokes Display  

1000 v 1100  1,100 Two larger, positive estimates. 

´_A  Error 8 No root found. 
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Keystrokes Display  

−  278.4497 Last estimate tried. 

)  276.7942 A previous estimate. 

)  7.8948 Nonzero value of function. 

|(|(  278.4497 Restores stack to original state. 

´_A  Error 8 Again, no root found. 

−  278.4398 Approximately same estimate. 

)  278.4497 A previous estimate. 

)  7.8948 Same function value. 

You have found a positive local minimum rather than a root. Now try to find the negative 

root 

Keystrokes Display  

1000 ”v -1,000.0000  

1100 ” -1,100 Two larger, negative estimates. 

´_A -108.9441 Negative root. 

) -108.9441 Same previous estimate. 

)  1.6000   -08 Function value. 

There is no need to search further—you have found all possible roots. The negative root has 

no meaning since it is outside of the range for which the declination approximation is valid. 

The graph of the function confirms the results you have found. 

 

Solving a System of Equations 

_ is designed to find a single variable value that satisfies a single equation. If a 

problem involves a system of equations with several variables, you may still be able to 

_ to find a solution. 



Section 1: Using _ Effectively 17 

 

For some systems of equations, expressed as 

f1(x1, …, xn) = 0 

⋮ 

fn(x1, …, xn) = 0 

it is possible through algebraic manipulation to eliminate all but one variable. That is, you 

can use the equations to derive expressions for all but one variable in terms of the remaining 

variable. By using these expressions, you can reduce the problem to using _ to find 

the root of a single equation. The values of the other variables at the solution can then be 

calculated using the derived expressions. 

This is often useful for solving a complex equation for a complex root. For such a problem, 

the complex equation can be expressed as two real-valued equations—one for the real 

component and one for the imaginary component—with two real variables—representing the 

real and imaginary parts of the complex root. 

For example, the complex equation z + 9 + 8e
−z

 = 0 has no real roots z, but it has infinitely 

many complex roots z = x + iy. This equation can be expressed as two real equations 

x + 9 + 8e
−x 

cos y = 0 

y       − 8e
−x 

sin y  = 0. 

The following manipulations can be used to eliminate y from the equations. Because the sign 

of y doesn't matter in the equations, assume y > 0, so that any solution (x,y) gives another 

solution (x,−y). Rewrite the second equation as 

x = ln(8(sin y)/y), 

which requires that sin y > 0, so that 2nπ < y < (2n + 1)π for integer n = 0, 1, .... 

From the first equation 

y = cos
−1

(−e
x
(x + 9)/8) + 2nπ 

= (2n + 1)π − cos
−1

(e
x
(x + 9)/8) 

for n = 0, 1, … substitute this expression into the second equation, 

0
))9((64

)8/)9((cos)12(
ln

2

1























xe

xen
x

x

x
. 

You can then use _ to find the root x of this equation (for any given value of n, the 

number of the root). Knowing x, you can calculate the corresponding value of y. 
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A final consideration for this example is to choose the initial estimates that would be 

appropriate. Because the argument of the inverse cosine must be between −1 and 1, x must be 

more negative than about −0.1059 (found by trial and error or by using _). The initial 

guesses might be near but more negative than this value, −0.11 and −0.2 for example.  

(The complex equation used in this example is solved using an iterative procedure in the 

example on page 69. Another method for solving a system of nonlinear equations is 

described on page 102.)  

Finding Local Extremes of a Function 

Using the Derivative 

The traditional way to find local maximums and minimums of a function's graph uses the 

derivative of the function. The derivative is a function that describes the slope of the graph. 

Values of x at which the derivative is zero represent potential local extremes of the function. 

(Although less common for well-behaved functions, values of x where the derivative is 

infinite or undefined are also possible extremes.) If you can express the derivative of a 

function in closed form, you can use _ to find where the derivative is zero—showing 

where the function may be maximum or minimum. 

Example: For the design of a vertical broadcasting tower, radio engineer Ann Tenor wants to 

find the angle from the tower at which the relative field intensity is most negative. The 

relative intensity created by the tower is given by 





sin)]2cos(1[

)2cos()cos2cos(

h

hh
E




  

where E is the relative field intensity, h is the antenna height in wavelengths, and θ is the 

angle from vertical in radians. The height is 0.6 wavelengths for her design. 

The desired angle is one at which the derivative of the intensity with respect to θ is zero. 

To save program memory space and execution time, store the following constants in registers 

and recall them as needed: 

r0 = 2πh   and is stored in register R0, 

r1 = cos(2πh)   and is stored in register R1, 

r2 = 1/[1 − cos(2πh)]   and is stored in register R2. 

The derivative of the intensity E with respect to the angle θ is given by 








 







 tansin

)coscos(
)cossin( 10

002

rr
rrr

d

dE

.
 

Key in a subroutine to calculate the derivative. 
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Keystrokes Display  

|¥  Program mode. 

´CLEAR M  000-  

´ b0  001-42,21, 0  

\  002-      24  

l0  003-   45  0  

*  004-      20  

\  005-      24  

l1  006-   45  1  

-  007-      30  

®  008-      34  

[  009-      23  

÷  010-      10  

®  011-      34  

]  012-      25  

÷  013-      10  

”  014-      16  

®  015-      34  

\  016-      24  

l0  017-   45  0  

*  018-      20  

[  019-      23  

l0  020-   45  0  

*  021-      20  

+  022-      40  

l2  023-   45  2  

*  024-      20  

| n  025-   43 32  

In Radians mode, calculate and store the three constants. 

Keystrokes Display  

|¥  Run mode. 

|R  Specifies Radians mode. 

2|$*  6.2832  

.6*O0  3.7699 Constant r0. 

\O1 -0.8090 Constant r1. 

”1+  1.8090  

⁄O2   0.5528 Constant r2. 
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The relative field intensity is maximum at an angle of 90° (perpendicular to the tower). To 

find the minimum, use angles closer to zero as initial estimates, such as the radian 

equivalents of 10° and 60°. 

Keystrokes Display  

10´r  0.1745  

60´r  1.0472 Initial estimates. 

´_0  0.4899 Angle giving zero slope. 

)) -5.5279    -10 Slope at specified angle. 

|(|(  0.4899 Restores the stack. 

|d  28.0680 Angle in degrees. 

The relative field intensity is most negative at an angle of 28.0680° from vertical. 

 

Using an Approximate Slope 

The derivative of a function can also be approximated numerically. If you sample a function 

at two points relatively close to x (namely x + Δ and x − Δ), you can use the slope of the 

secant as an approximation to the slope at x: 






2

)()( xfxf
s  
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The accuracy of this approximation depends upon the increment Δ and the nature of the 

function. Smaller values of Δ give better approximations to the derivative, but excessively 

small values can cause round-off inaccuracy. A value of x at which the slope is zero is 

potentially a local extreme of the function. 

Example: Solve the previous example without using the equation for the derivative dE/dθ. 

Find the angle at which the derivative (determined numerically) of the intensity E is zero. 

In Program mode, key in two subroutines: one to estimate the derivative of the intensity and 

one to evaluate the intensity function E. In the following subroutine, the slope is calculated 

between θ + 0.001 and θ − 0.001 radians (a range equivalent to approximately 0.1°). 

Keystrokes Display  

|¥  000- Program mode. 

´bA  001-42,21,11  

“  002-      26  

”  003-      16  

3  004-       3 Evaluates E at θ + 0.001. 

+  005-      40  

v  006-      36  

GB  007-   32 12  

®  008-      34  

“  009-      26  

”  010-      16  

3  011-       3 Evaluates E at θ − 0.001. 

-  012-      30  

v  013-      36  

GB  014-   32 12  

-  015-      30  

2  016-       2  

“  017-      26  

”  018-      16  

3  019-       3  

÷  020-      10  

|n  021-   43 32  

´bB  022-42,21,12 Subroutine for E(θ). 

\  023-      24  

l0  024-   45  0  

*  025-      20  

\  026-      24  

l1  027-   45  1  

-  028-      30  
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Keystrokes Display  

®  029-      34  

[  030-      23  

÷  031-      10  

l2  032-   45  2  

*  033-      20  

|n  034-   43 32  

In the previous example, the calculator was set to Radians mode and the three constants were 

stored in registers R0, R1, and R2. Key in the same initial estimates as before and execute 

_. 

Keystrokes Display  

|¥  Run mode. 

10´r  0.1745  

60´r  1.0472 Initial estimates. 

´_A  0.4899 Angle given zero slope. 

))  0.0000 Slope at specified angle. 

|(|(  0.4899 Restores stack. 

vv´B -0.2043 Uses function subroutine to 

calculate minimum intensity. 

®  0.4899 Recalls θ value. 

|d  28.0679 Angle in degrees. 

This numerical approximation of the derivative indicates a minimum field intensity of 

−0.2043 at an angle of 28.0679°. (This angle differs from the previous solution by 0.0001°.) 

Using Repeated Estimation 

A third technique is useful when it isn't practical to calculate the derivative. It is a slower 

method because it requires the repeated use of the _ key. On the other hand, you 

don't have to find a good value for Δ of the previous method. To find a local extreme of the 

function f(x), define a new function 

g(x) = f(x) − e 

where e is a number slightly beyond the estimated extreme value of f(x). If e is properly 

chosen, g(x) will approach zero near the extreme of f(x) but will not equal zero. Use _ 

to analyze g(x) near the extreme. The desired result is Error 8. 

 If  Error 8 is displayed, the number in the X-register is an x value near the extreme. 

The number in the Z-register tells roughly how far e is from the extreme value of f(x). 

Revise e to bring it closer (but not equal) to the extreme value. Then use _ to 

examine the revised g(x) near the x value previously found. Repeat this procedure 

until successive x values do not differ significantly. 
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 If a root of g(x) is found, either the number e is not beyond the extreme value of f(x) 

or else _ has found a different region where f(x) equals e. Revise e so that it is 

close to—but beyond—the extreme value of f(x) and try _ again. It may also 

be possible to modify g(x) in order to eliminate the distant root. 

 

Example: Solve the previous example without calculating the derivative of the relative field 

intensity E. 

The subroutine to calculate E and the required constants have been entered in the previous 

example. 

In Program mode, key in a subroutine that subtracts an estimated extreme number from the 

field intensity E. The extreme number should be stored in a register so that it can be manually 

changed as needed. 

Keystrokes Display  

|¥  000- Program mode. 

´b1  001-42,21, 1 Begins with label. 

GB  002-   32 12 Calculates E. 

l9  003-   45  9  

-  004-      30 Subtracts extreme estimate. 

|n  005-   43 32  

In Run mode, estimate the minimum intensity value by manually sampling the function. 

Keystrokes Display  

|¥  Run mode. 

10´r  0.1745  

v´B -0.1029  

30´r  0.5236 Samples the function at 

v´B -0.2028 10°, 30°, 50°, … 

50´r  0.8727  

v´B  0.0405  
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Based on these samples, try using an extreme estimate of −0.25 and initial _ 

estimates (in radians ) near 10° and 30°. 

Keystrokes Display  

.25”O9 -0.2500 Stores extreme estimate. 

.2v  0.2000  

.6  0.6 Initial estimates. 

´_1  Error 8 No root found. 

−O4  0.4849 Stores θ estimate. 

)O5  0.4698 Stores previous θ estimate. 

)  0.0457 Distance from extreme. 

.9*  0.0411 Revises extreme estimate  

by 90 percent of the distance. O+9  0.0411 

l4  0.4849 Recalls θ estimate. 

vv´B -0.2043 Calculates intensity E. 

−  0.0000 Recalls other θ estimate, 

keeping first estimate in Y-

register. 
l5  0.4698 

´_1  Error 8 No root found. 

−  0.4898 θ estimate. 

®  0.4893 Previous θ estimate. 

®  0.4898 Recalls θ estimate. 

vv´B -0.2043 Calculates intensity E. 

®  0.4898 Recalls θ value. 

|d  28.0660 Angle in degrees. 

|D  28.0660 Restores Degrees mode. 

The second interaction produces two θ estimates that differ in the fourth decimal place. The 

field intensities E for the two iterations are equal to four decimal places. Stopping at this 

point, a minimum field intensity of −0.2043 is indicated at an angle of 28.0660°. (This angle 

differs from the previous solutions by about 0.002°.) 

Applications 

The following applications illustrate how you can use _ to simplify a calculation that 

would normally be difficult—finding an interest rate that can't be calculated directly. Other 

applications that use the _ function are given in Sections 3 and 4. 

Annuities and Compound Amounts 

This program solves a variety of financial problems involving money, time, and interest. For 

these problems, you normally know the values of three or four of the following variables and 

need to find the value of another: 
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n The number of compounding periods. (For example, a 30 year loan with monthly 

payments has n = 12 x 30 = 360.) 

i The interest rate per compounding period expressed as a percent. (To calculate i, 

divide the annual percentage rate by the number of compounding periods in a year. 

That is, 12% annual interest compounded monthly equals 1% periodic interest.) 

PV The present value of a series of future cash flows or the initial cash flow. 

PMT The periodic payment amount. 

FV The future value. That is, the final cash flow (balloon payment or remaining balance) 

or the compounded value of a series of prior cash flows. 

Possible Problems Involving Annuities  
and Compound Amounts 

Allowable 
Combinations of  

Variables 

Typical Applications 

Initial Procedure For Payments at 
End of Period 

For Payments at 
Beginning of Period 

n, i, PV, PMT (Enter 
any three and 
calculate the fourth.) 

Direct reduction loan. 

Discounted note. 

Mortgage. 

Lease. 

Annuity due. 

Use ´CLEARQ 
or set FV to zero. 

n, i, PV, PMT, FV 
(Enter any four and 
calculate the fifth.) 

Direct reduction loan 
with balloon 
payment. 

Discounted note. 

Least with residual value. 

Annuity due. 

None. 

n, i, PMT, FV (Enter 
any three and 
calculate the fourth.) 

Sinking fund. Periodic savings. 

Insurance. 

Use ´CLEARQ 
or set PV to zero. 

n, i, PV, FV (Enter any 
three and calculate the 
fourth.) 

Compound growth. 

Savings. 

Use ´CLEARQ 
or set PMT to zero. 

The program accommodates payments that are made at the beginning or end of compounding 

periods. Payments made at the end of compounding periods (ordinary annuity) are common 

in direct reduction loans and mortgages. Payments made at the beginning of compounding 

periods (annuity due) are common in leasing. For payments at the end of periods, clear flag 

0. For payments at the beginning of periods, set flag 0. If the problem involves no payments, 

the status of flag 0 has no effect. 

This program uses the convention that money paid out is entered and displayed as a negative 

number, and that money received is entered and displayed as a positive number. 

A financial problem can usually be represented by a cash flow diagram. This is a pictorial 

representation of the timing and direction of financial transactions. The cash flow diagram 

has a horizontal time line that is divided into equal increments that correspond to the 
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compounding period—months or years, for example. Vertical arrows represent exchanges of 

money, following the convention that an upward arrow (positive) represents money received 

and a downward arrow (negative) represents money paid out. (The examples that follow are 

illustrated using cash flow diagrams.) 

 

Pressing ´CLEARQ provides a convenient way to set up the calculator for a new 

problem. However, it isn't necessary to press ´CLEARQ between problems. You 

need to reenter the values of only those variables that change from problem to problem. If a 

variable isn't applicable for a new problem, simply enter zero as its value. For example, if 

PMT is used in one problem but not used in the next, simply enter zero for the value of PMT 

in the second problem. 

The basic equation used for the financial calculations is 

0)100/1(])100/1(1[
100/

  nn iFVi
i

APMT
PV  

where i ≠ 0 and 

A = 
1 for end-of-period payments 

1 + i/100 for beginning-of-period payments. 

The program has the following characteristics: 

 _ is used to find i. Because this is an iterative function, solving for i takes 

longer than finding other variables. It is possible to define problems which cannot be 

solved by this technique. If _ can't find a root, Error 4 is displayed. 

 When finding any of the variables listed on the left below, certain conditions result in 

an Error 4 display: 

n PMT = −PV i/(100 A) 

(PMT A – FV i/100)/(PMT A + PV i/100) ≤ 0 

i ≤ −100 

i _ can’t find a root 

PV i ≤ −100 

PMT n = 0 

i = 0 

i ≤ −100 

FV i ≤ −100 
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 If a problem has a specified interest rate of 0, the program generates an Error 0 

display (or Error 4 when solving for PMT). 

 Problems with extremely large (greater than 10
6
) or extremely small (less than 10

−6
) 

values for n and i may give invalid results: 

 Interest problems with balloon payments of opposite signs to the periodic payments 

may have more than one mathematically correct answer (or no answer at all). This 

program may find one of the answers but has no way of finding or indicating other 

possibilities. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11 n routine. 

O1  002-   44  1 Stores n. 

¦  003-      31  

G1  004-   32  1 Calculates n. 

|K  005-   43 36  

l*0  006-45,20, 0  

l5  007-   45  5  

®  008-      34  

-  009-      30 Calculates 

PV – 100 PMT A/i. 

|K  010-   43 36  

l+3  011-45,40, 3 Calculates PV + 100 PMT A/i. 

|~  012-   43 20 Tests PMT = −PV  i/(100 A). 

t0  013-   22  0  

÷  014-      10  

”  015-      16  

|T4  016-43,30, 4 Tests x ≤ 0. 

t0  017-   22  0  

|N  018-   43 12  

l6  019-   45  6  

|N  020-   43 12  

÷  021-      10  

O1  022-   44  1  

|n  023-   43 32  

´bB  024-42,21,12 i routine. 

O2  025-   44  2 Stores i. 

¦  026-      31  

.  027-      48  

2  028-       2  
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Keystrokes Display  

v  029-      36  

“  030-      26  

”  031-      16  

3  032-       3  

|"1  033-43, 5, 1 Clears flag 1 for _ 

subroutine. 

´_3  034-42,10, 3  

t4  035-   22  4  

t0  036-   22  0  

´b4  037-42,21, 4  

“  038-      26  

2  039-       2  

*  040-      20 Calculates i. 

O2  041-   44  2  

|n  042-   43 32  

´bC  043-42,21,13 PV routine. 

O3  044-   44  3 Stores PV. 

¦  045-      31  

G1  046-   32  1 Calculates PV. 

G2  047-   32  2  

”  048-      16  

O3  049-   44  3  

|n  050-   43 32  

´bÁ  051-42,21,14 PMT routine. 

O4  052-   44  4 Stores PMT. 

¦  053-      31  

1  054-       1 Calculates PMT. 

O4  055-   44  4  

G1  056-   32  1  

l3  057-   45  3  

G2  058-   32  2  

®  059-      34  

÷  060-      10  

”  061-      16  

O4  062-   44  4  

|n  063-   43 32  

´bE  064-42,21,15 FV routine. 

O5  065-   44  5 Stores FV. 
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Keystrokes Display  

¦  066-      31  

G1  067-   32  1 Calculates FV. 

l+3  068-45,40, 3  

l÷7  069-45,10, 7  

”  070-      16  

O5  071-   44  5  

|n  072-   43 32  

´b1  073-42,21, 1  

|F1  074-43, 4, 1 Sets flag 1 for subroutine 3. 

1  075-       1  

l2  076-   45  2  

|k  077-   43 14 Calculates i/100. 

´b3  078-42,21, 3 _ subroutine. 

O8  079-   44  8  

1  080-       1  

O0  081-   44  0  

+  082-      40  

|T4  083-43,30, 4 Tests i ≤ 100. 

t0  084-   22  0  

O6  085-   44  6  

|?0  086-43, 6, 0 Tests for end-of-period 

payments. 

O0  087-   44  0  

l1  088-   45  1  

”  089-      16  

Y  090-      14 Calculates (1 + i/100)
−n

. 

O7  091-   44  7  

1  092-       1  

®  093-      34  

-  094-      30 Calculates 1 − (1 + i/100)
−n

. 

|~  095-   43 20 Tests i = 0 or n = 0. 

t0  096-   22  0  

l*0  097-45,20, 0  

l4  098-   45  4  

l÷8  099-45,10, 8  

*  100-      20  

|?1  101-43, 6, 1 Tests flag 1 set. 

|n  102-   43 32  
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Keystrokes Display  

l+3  103-45,40, 3 _ subroutine continues. 

´b2  104-42,21, 2  

l5  105-   45  5  

l*7  106-45,20, 7 Calculates FV(1 + i/100)
−n

. 

+  107-      40  

|n  108-   43 32 _ subroutine ends. 

Labels used: A, B, C, D, E, 0, 1, 2, 3, and 4. 

Registers used: R0 (A), R1 (n), R2 (i), R3 (PV), R4 (PMT), R5 (FV), R6, R7, and R8. 

To use the program: 

1. Press 8´m% to reserve R0 through R8. 

2. Press ´U to activate User mode. 

3. If necessary, press ´CLEARQ to clear all of the financial variables. You don't 

need to clear the registers if you intend to specify all of the values. 

4. Set flag 0 according to how payments are to be figured: 

 Press |"0 for payments at the end of the period. 

 Press |F0 for payments at the beginning of the period. 

5. Enter the known values of the financial variables: 

 To enter n, key in the value and press A. 

 To enter i, key in the value and press B. 

 To enter PV, key in the value and press C. 

 To enter PMT, key in the value and press Á. 

 To enter FV, key in the value and press E. 

6. Calculate the unknown value: 

 To calculate n, press A ¦. 

 To calculate i, press B ¦. 

 To calculate PV, press C ¦. 

 To calculate PMT, press Á ¦. 

 To calculate FV, press E ¦. 

7. To solve another problem, repeat steps 3 through 6 as needed. Be sure that any variable 

not to be used in the problem has a value of zero. 
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Example: You place $155 in a savings account paying 5¾% compounded monthly. What 

sum of money can you withdraw at the end of 9 years? 

 

Keystrokes Display  

|¥  Run mode. 

´CLEARQ  Clears financial variables. 

´•2   

´U  Activates User mode. 

|"0  Ordinary annuity. 

9v12*A  108.00 Enters n = 9 × 12. 

5.75v12÷B  0.48 Enters i = 5.75 / 12. 

155”C -155.00 Enters PV = −155 (money paid 

out). 

E¦  259.74 Calculates FV. 

If you desire a sum of $275, what would be the required interest rate? 

Keystrokes Display  

275E  275.00 Enters FV = 275. 

B¦  0.53 Calculates i. 

12*  6.39 Calculates annual interest rate. 

Example: You receive $30,000 from the bank as a 30-year, 13% mortgage. What monthly 

payment must you make to the bank to fully amortize the mortgage? 
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Keystrokes Display  

´CLEARQ  Clears financial variables 

30v12*A  360.00 Enters n = 30 × 12. 

13v12÷B  1.08 Enters i = 13/12. 

30000C  30,000.00 Enters PV = 30,000. 

Á¦ -331.86 Calculates PMT (money paid out). 

Example: You offer a loan of $3,600 that is to be repaid in 36 monthly payments of $100 

with an annual interest rate of 10%. What balloon payment amount, to be paid coincident 

with the 36th payment, is required to pay off the loan? 

 

Keystrokes Display  

´CLEARQ  Clears financial variables 

36A  36.00 Enters n = 36. 

10v12÷B  0.83 Enters i = 10/12. 

3600”C -3600.00 Enters PV = −3600 (money paid out). 

100Á  100.00 Enters PMT = 100 (money received). 

E¦  675.27 Calculates FV. 

The final payment is $675.27 + $100.00 = $775.27 because the final payment and balloon 

payment are due at end of the last period. 

Example: You're collecting a $50,000 loan at 14% annual interest over 360 months. Find the 

remaining balance after the 24th payment and the interest accrued between the 12th and 24th 

payments. 

You can use the program to calculate accumulated interest and the remaining balance for 

loans. The accumulated interest is equal to the total payments made during that time less the 

principal reduction during that time. The principal reduction is the difference between the 

remaining balances at the start and end of the period. 

First, calculate the payment on the loan. 
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Keystrokes Display  

´CLEARQ  Clears financial variables 

360A  360.00 Enters n = 360. 

14v12÷B  1.17 Enters i = 14/12. 

50000”C -50,000.00 Enters PV = −50,000. 

Á¦  592.44 Calculates PMT. 

Now calculate the remaining balance at month 24. 

Keystrokes Display  

24A  24.00 Enters n = 24. 

E¦  49,749.56 Calculates FV at month 24. 

Store this remaining balance, then calculate the remaining balance at month 12 and the 

principal reduction between payments 12 and 24. 

Keystrokes Display  

OV  49,749.56  

12A  12.00 Enters n = 12. 

E¦  49,883.48 Calculates FV at month 12. 

lV  49,749.56 Recalls FV at month 24. 

-  133.92 Calculates principal reduction. 

The accrued interest is the value of 12 payments less the principal reduction. 

Keystrokes Display  

l4  592.44 Recalls PMT. 

12*  7,109.23 Calculates value of payments. 

®-  6,975.31 Calculates accrued interest. 

Example: A leasing firm is considering the purchase of a minicomputer for $63,000 and 

wants to achieve a 13% annual yield by leasing the computer for a 5-year period. At the end 

of the lease the firm expects to sell the computer for at least $10,000. What monthly payment 

should the firm charge in order to achieve a 13% yield? (Because the lease payments are due 

at the beginning of each month, be sure to set flag 0 to specify beginning-of-period 

payments.) 
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Keystrokes  Display  

´CLEARQ  Clears financial variables. 

|F0  Specifies beginning of period 

payments. 

5v12*A  60.00 Enters n = 5 × 12. 

13v12÷B  1.08 Enters i = 13/12. 

63000”C -63,000.00 Enters PV = −63,000. 

10000E  10,000.00 Enters FV = 10,000. 

Á¦  1,300.16 Calculates PMT. 

If the prices of the computer increases to $70,000, what should the payments be? 

Keystrokes Display  

70000”C -70,000.00 Enters PV = −70,000. 

Á¦  1,457.73 Calculates PMT. 

If the payments were increased to $1,500, what would the yield be? 

Keystrokes Display  

1500 Á  1,500.00 Enters PMT = 1500. 

B¦  1.18 Calculates i (monthly). 

12*  14.12 Calculates annual yield. 

´U  14.12 Deactivates User mode. 

Discounted Cash Flow Analysis 

This program performs two kinds of discounted cash flow analysis: net present value (NPV) 

and internal rate of return (IRR). It calculates NPV or IRR for up to 24 groups of cash flows. 

The cash flows are stored in the two-column matrix C. Matrix C has one row for each group 

of cash flows. In each row of C, the first element is the cash flow amount; the second 

element is the number of consecutive cash flows having that amount (the number of flows in 

that group). The first element of C must be the amount of the initial investment. The cash 
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flows must occur at equal intervals; if no cash flow occurs for several time periods, enter 0 

for the cash flow amount and the number of zero cash flows in that group. 

After all the cash flows have been stored in matrix C, you can enter an assumed interest rate 

and calculate the net present value (NPV) of the investment. Alternatively, you can calculate 

the internal rate of return (IRR). The IRR is the interest rate that makes the present value of a 

series of cash flows equal to the initial investment. It's the interest rate that makes the NPV 

equal zero. IRR is also called the yield or discounted rate of return. 

The fundamental equation for NPV is 
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The program uses the convention that money received is entered and displayed as a positive 

number, and that money paid out is entered and displayed as a negative number. 

The program has the following characteristics: 

 The cash flow sequence (including the initial investment) must contain both a positive 

flow and a negative flow. That is, there must be at least one sign change. 

 Cash flows with multiple sign changes may have more than one solution. This 

program may find one solution, but it has no way of indicating other possibilities. 

 The IRR calculation may take several seconds (5 or more) depending of the number 

of cash flow entries. 

 The program displays Error 4 if it is unable to find a solution for IRR or if the yield i 

 −100% in the NPV calculation. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11 NPV routine. 

“  002-      26  

2  003-       2  

÷  004-      10 Calculates IIR / 100. 

G2  005-   32  2  

¦  006-      31  

´bB  007-42,21,12 IIR routine. 

1  008-       1  

v  009-      36  



36 Section 1: Using _ Effectively 

36 

Keystrokes Display  

“  010-      26  

”  011-      16  

3  012-       3  

´_2  013-42,10, 2  

t1  014-   22  1  

t0  015-   22  0 Branch for no IRR solution. 

´b1  016-42,21, 1  

“  017-      26  

2  018-       2  

*  019-      20  

¦  020-      31  

´b2  021-42,21, 2 Calculates NPV. 

|"0  022-43, 5, 0  

O2  023-   44  2  

1  024-       1  

O4  025-   44  4  

+  026-      40 Calculates 1 + IRR / 100. 

|T4  027-43,30, 4 Tests IRR ≤ −100. 

t0  028-   22  0 Branch for IRR ≤ −100. 

O3  029-   44  3  

0  030-       0  

O5  031-   44  5  

´>1  032-42,16, 1  

´b3  033-42,21, 3  

|?0  034-43, 6, 0 Tests if all flows used. 

t7  035-   22  7 Branch for all flows used. 

G6  036-   32  6  

l2  037-   45  2  

|~  038-   43 20 Tests IRR = 0; 

t4  039-   22  4 Branch for IRR = 0. 

1  040-       1  

+  041-      40  

G6  042-   32  6  

”  043-      16  

Y  044-      14  

O4  045-   44  4  

1  046-       1  

®  047-      34  
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Keystrokes Display  

-  048-      30  

l÷2  049-45,10, 2  

l*3  050-45,20, 3  

t5  051-   22  5  

´b4  052-42,21, 4  

®  053-      34  

G6  054-   32  6  

´b5  055-42,21, 5  

*  056-      20  

O+5  057-44,40, 5  

l4  058-   45  4  

O*3  059-44,20, 3  

t3  060-   22  3  

´b6  061-42,21, 6 Recalls cash flow element. 

´UlC  062u   45 13  

´U   

|n  063-   43 32  

| F0  064-43, 4, 0 Sets flag 0 if last element. 

|n  065-   43 32  

´b7  066-42,21, 7  

l5  067-   45  5 Recalls NPV. 

|n  068-   43 32  

Labels used: A, B, and 0 through 7. 

Registers used: R0 through R5. 

Matrix used: C. 

To use the discounted cash flow analysis program: 

1. Press 5´m% to allocate registers R0 through R5. 

2. Press ´U to activate User mode (unless it's already active). 

3. Key in the number of cash flow groups, then press v2´mC               
to dimension matrix C. 

4. Press ´>1 to set the row and column numbers to 1. 

5. For each cash flow group: 

a. Key in the amount and press OC, then 

b. Key in the number of occurrences and press OC. 

6. Calculate the desired parameter: 

 To calculate IRR, press B. 



38 Section 1: Using _ Effectively 

38 

 To calculate NPV, enter periodic interest rate i in percent and press A. Repeat 

for as many interest rates as needed. 

7. Repeat steps 3 through 6 for other sets of cash flows. 

Example: An investor pays $80,000 for a duplex that he intends to sell after 7 years. He 

must spend some money the first year for repairs. At the end of the seventh year the duplex is 

sold for $91,000. Will he achieve a desired 9% after-tax yield with the following after-tax 

cash flows? 

 

Keystrokes Display  

|¥  Run mode. 

´•2   

5´m%  5.00 Reserve registers R0 through 

R5. 

6v2  2  

´mC  2.00  

´>1  2.00  

´U  2.00  

80000”OC -80,000.00 Initial investment. 

1OC  1.00  

600”OC -600.00  

1OC  1.00  

6500OC  6,500.00  

1OC  1.00  

8000OC  8,000.00  

2OC  2.00  

7500OC  7,500.00  

2OC  2.00  

91000OC  91,000.00  

1OC  1.00  

9  9 Enters assumed yield. 

A -4,108.06 NPV. 
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Since the NPV is negative, the investment does not achieve the desired 9% yield. Calculate 

the IRR. 

Keystrokes Display  

B  8.04 IRR (after about 5 seconds). 

The IRR is less than the desired 9% yield. 

Example: An investment of $620,000,000 is expected to have an annual income stream for 

the next 15 years as shown in the diagram. 

 

What is the expected rate of return? 

Keystrokes Display  

3v2  2  

´mC  2.00  

´>1  2.00  

620000000” -620,000,000  

OC -620,000,000.0  

1OC  1.00  

100000000OC  100,000,000.0  

10OC  10.00  

5000000OC  5,000,000.00  

5OC  5.00  

B  10.06 IRR. 

´•4  10.0649  

´U  10.0649 Deactivates User mode. 
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Section 2: 
Working with f 

The HP-15C gives you the ability to perform numerical integration using f. This section 

shows you how to use f effectively and describes techniques that enable you to handle 

difficult integrals. 

Numerical Integration Using f 
A calculator using numerical integration can almost never calculate an integral precisely. But 

the f function asks you in a convenient way to specify how much error is tolerable. It asks 

you to set the display format according to how many figures are accurate in the integrand 

f(x). In effect, you specify the width of a ribbon drawn around the graph of f(x). The integral 

estimated by f corresponds to the area under some unspecified graph lying entirely within 

the ribbon. Of course, this estimate could vary by as much as the area of the ribbon, so f 

estimates this area too. If I is the desired integral, then 

























ribbonthe

ofarea
2

1

ribbontheindrawn

graphaunderarea
I  

The HP-15C places the first area estimate in the X-register and the second-the uncertainty-in 

the Y-register. 

 

For example, f(x) might represent a physical effect whose magnitude can be determined only 

to within ± 0.005. Then the value calculated as f(x) has an uncertainty of 0.005. A display 

setting of •2 tells the calculator that decimal digits beyond the second can't matter. The 

calculator need not waste time estimating the integral with unwarranted precision. Instead, 

the calculator can more quickly give you a fair idea of the range of values within which the 

integral must lie. 
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The HP-15C doesn't prevent you from declaring that f(x) is far more accurate than it really is. 

You can specify the display setting after a careful error analysis, or you can just offer a 

guess. You may leave the display set to i or • 4 without much further thought. You 

will get an estimate of the integral and its uncertainty, enabling you to interpret the result 

more intelligently than if you got the answer with no idea of its accuracy or inaccuracy. 

The f algorithm uses a Romberg method for accumulating the value of the integral. 

Several refinements make it more effective. 

Instead of using uniformly spaced samples, which can induce a kind of resonance or aliasing 

that produces misleading results when the integrand is periodic f uses samples that are 

spaced nonuniformly. Their spacing can be demonstrated by substituting, say, 

3

2

1

2

3
uux   

into 

 











1

1

23
1

1
)1(

2

3

2

1

2

3
)( duuuufdxxfI  

and sampling u uniformly. Besides suppressing resonance, the substitution has two more 

benefits. First, no sample need be drawn from either end of the interval of integration (except 

when the interval is so narrow that no other possibilities are available). As a result, an 

integral like 


3

0

sin
dx

x

x
 

won't be interrupted by division by zero at an endpoint. Second, f can integrate functions 

that behave like ax   whose slope is infinite at an endpoint. Such functions are encountered 

when calculating the area enclosed by a smooth, closed curve. 

Another refinement is that f uses extended precision, 13 significant digits, to accumulate 

the internal sums. This allows thousands of samples to be accumulated, if necessary, without 

losing to roundoff any more information than is lost within your function subroutine. 

Accuracy of the Function to be Integrated 

The accuracy of an integral calculated using f depends on the accuracy of the function 

calculated by your subroutine. This accuracy, which you specify using the display format, 

depends primarily on three considerations: 

 The accuracy of empirical constants in the function. 

 The degree to which the function may accurately describe a physical situation. 

 The extent of round-off error in the internal calculations of the calculator. 
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Functions Related to Physical Situations 

Functions like cos(4 - sin) are pure mathematical functions. In this context, this means that 

the functions do not contain any empirical constants, and neither the variables nor the limits 

of integration represent actual physical quantities. For such functions, you can specify as 

many digits as you want in the display format (up to nine) to achieve the desired degree of 

accuracy in the integral.
†
 All you need to consider is the trade-off between the accuracy and 

calculation time. 

There are additional considerations, however, when you're integrating functions relating to an 

actual physical situation. Basically, with such functions you should ask yourself whether the 

accuracy you would like in the integral is justified by the accuracy in the function. For 

example, if the function contains empirical constants that are specified to only, say, three 

significant digits, it might not make sense to specify more than three digits in the display 

format. 

Another important consideration—and one which is more subtle and therefore more easily 

overlooked—is that nearly every function relating to a physical situation is inherently 

inaccurate to a certain degree, because it is only a mathematical model of an actual process 

or event. A mathematical model is itself an approximation that ignores the effects of known 

or unknown factors which are insignificant to the degree that the results are still useful. 

An example of a mathematical model is the normal distribution function,  

 


t

dx
e

x





2

22/2)(

 

which has been found to be useful in deriving information concerning physical measurements 

on living organisms, product dimensions, average temperatures, etc. Such mathematical 

descriptions typically are either derived from theoretical considerations or inferred from 

experimental data. To be practically useful, they are constructed with certain assumptions, 

such as ignoring the effects of relatively insignificant factors. For example, the accuracy of 

results obtained using the normal distribution function as a model of the distribution of 

certain quantities depends on the size of the population being studied. And the accuracy of 

results obtained from the equation s = s0 − ½gt
2
, which gives the height of a falling body, 

ignores the variation with altitude of g, the acceleration of gravity. 

Thus, mathematical descriptions of the physical world can provide results of only limited 

accuracy. If you calculated an integral with an apparent accuracy beyond that with which the 

model describes the actual behavior of the process or event, you would not be justified in 

using the calculated value to the full apparent accuracy. 

Round-Off Error in Internal Calculations 

With any computational device—including the HP-15C—calculated results must be 

“rounded off” to a finite number of digits (10 digits in the HP-15C). Because of this round-

off error, calculated results—especially results of evaluating a function that contains several 

                                                           

† Provided that f(x) is still calculated accurately, despite round-off error, to the number of digits shown in the display. 
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mathematical operations—may not be accurate to all 10 digits that can be displayed. Note 

that round-off error affects the evaluation of any mathematical expression, not just the 

evaluation of a function to be integrated using f. (Refer to the appendix for additional 

information.) 

If f(x) is a function relating to a physical situation, its inaccuracy due to round-off typically is 

insignificant compared to the inaccuracy due to empirical constants, etc. If f(x) is what we 

have called a pure mathematical function, its accuracy is limited only by round-off error. 

Generally, it would require a complicated analysis to determine precisely how many digits of 

a calculated function might be affected by round-off. In practice, its effects are typically (and 

adequately) determined through experience rather than analysis. 

In certain situations, round-off error can cause peculiar results, particularly if you should 

compare the results of calculating integrals that are equivalent mathematically but differ by a 

transformation of variables. However, you are unlikely to encounter such situations in typical 

applications. 

Shortening Calculation Time 

The time required for f to calculate an integral depends on how soon a certain density of 

sample points is achieved in the region where the function is interesting. The calculation of 

the integral of any function will be prolonged if the interval of integration includes mostly 

regions where the function is not interesting. Fortunately, if you must calculate such an 

integral, you can modify the problem so that the calculation time is reduced. Two such 

techniques are subdividing the interval of integration and transformation of variables. 

Subdividing the Interval of Integration 

In regions where the slope of f(x) is varying appreciably, a high density of sample points is 

necessary to provide an approximation that changes insignificantly from one iteration to the 

next. However, in regions where the slope of the function stays nearly constant, a high 

density of sample points is not necessary. This is because evaluating the function at 

additional sample points would not yield much new information about the function, so it 

would not dramatically affect the disparity between successive approximations. 

Consequently, in such regions an approximation of comparable accuracy could be achieved 

with substantially fewer sample points: so much of the time spent evaluating the function in 

these regions is wasted. When integrating such functions, you can save time by using the 

following procedure: 

1. Divide the interval of integration into subintervals over which the function is 

interesting and subintervals over which the function is uninteresting. 

2. Over the subintervals where the function is interesting, calculate the integral in the 

display format corresponding to the accuracy you would like overall. 

3. Over the subintervals where the function either is not interesting or contributes 

negligibly to the integral, calculate the integral with less accuracy, that is, in a display 

format specifying fewer digits. 
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4. To get the integral over the entire interval of integration, add together the 

approximations and their uncertainties from the integrals calculated over each 

subinterval. You can do this easily using the z key. 

Before subdividing the integration, check whether the calculator underflows when evaluating 

the function around the upper (or lower) limit of integration.
‡
 Since there is no reason to 

evaluate the function at values of x for which the calculator underflows, in some cases the 

upper limit of integration can be reduced, saving considerable calculation time. 

Remember that once you have keyed in the subroutine that evaluates f(x), you can calculate 

f(x) for any value of x by keying that value into the X-register and pressing 

vvvG followed by the label of the subroutine. 

If the calculator underflows at the upper limit of integration, try smaller numbers until you 

get closer to the point where the calculator no longer underflows 

For example, consider the approximation of 






0
dxxe x . 

Key in a subroutine that evaluates f(x) = xe
−x

. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000- Clears program memory. 

´b1  001-42,21, 1  

”  002-      16  

'  003-      12  

*  004-      20  

|n  005-   43 32  

Set the calculator to Run mode and set the display format to i3. They try several values 

of x to find where the calculator underflows for your function. 

Keystrokes Display  

|¥  Run mode. 

´i3  Sets format to i3. 

“3  1         03 Keys 1000 into X-register 

vvv  1.000     03 Fills the stack with x. 

G1  0.000     00 Calculator underflows at x = 

1000. 

300v  3.000     02  

G1  0.000     00 Calculator still underflows. 

                                                           

‡ When the calculation of any quantity would result in a number less than 10−99, the result is replaced by zero. This 

condition is known as underflow. 
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Keystrokes Display  

200v  2.000     00 Try a smaller value of x. 

vv  2.000     02  

G1  2.768    -85 Calculator doesn’t underflow at 

x = 200; try a number between 

200 and 250. 

225v  2.250     02  

vv  2.250     02  

G1  4.324    -96 Calculator is close to underflow. 

At this point, you can use _ to pinpoint the smallest value of x at which the calculator 

underflows. 

Keystrokes Display  

)  2.250     02 Roll down stack until the last 

value tried is in the X- and Y-

registers. 

´_1  2.280     02 The minimum value of x at 

which the calculator underflows 

is about 228. 

You've now determined that you need integrate only from 0 to 228. Since the integrand is 

interesting only for values of x less than 10, divide the interval of integration there. The 

problem has now become: 

  



 

228

0

10

0

228

100
dxxedxxedxxedxxe xxxx

. 

Keystrokes Display  

7´m%  7.000     00 Allocates statistical storage 

registers. 

´CLEARz  0.000     00 Clears statistical storage 

registers. 

0v  0.000     00 Keys in lower limit of 

integration over first subinterval. 

10  10 Keys in upper limit of 

integration over first subinterval. 

´f1  9.995    -01 Integral over (0,10) calculated in 

i3. 

z  1.000     00 Sum approximation and its 

uncertainty in registers R3 and 

R5. 
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Keystrokes Display  

®  1.841    -04 Uncertainty of approximation. 

))  1.000     01 Roll down stack until upper 

limit of first integral appears in 

X-register. 

228  228 Keys upper limit of second 

integral into X-register. Upper 

limit of first integral is lifted 

into Y-register, becoming lower 

limit of second integral. 

´i0  2.        02 Specfiies i0 display format 

for quick calculation over 

(10,228). If the uncertainty of 

the approximation turns out not 

to be accurate enough, you can 

repeat the approximation in a 

display format specifying more 

digits. 

´f1  5.       -04 Integral over (10,228) calculated 

in i0. 

´i3  5.328    -04 Changes display format back to 

i3. 

®  7.568    -05 Checks uncertainty of 

approximation. Since it is less 

than the uncertainty of the 

approximation over the first 

subinterval, i0 yielded an 

approximation of sufficient 

accuracy. 

®  5.328     -04 Returns approximation and its 

uncertainty to the X- and Y-

registers, respectively, before 

summing them in statistical 

storage registers. 

z  2.000      00 Sums approximation and its 

uncertainty. 

lz  1.000      00 Integral over total interval 

(0,228) (recalled from R3). 

®  2.598     -04 Uncertainty of integral (from 

R5). 
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Transformation of Variables 

In many problems where the function changes very slowly over most of a very wide interval 

of integration, a suitable transformation of variables may decrease the time required to 

calculate the integral. 

For example, consider again the integral 

. 




0
dxxe x  

Let 3ue x   

Then ux ln3  

And 
u

du
dx 3 . 

Substituting, 



 













 





0

1

2

0 0

3

ln9

3))(ln3(

duuu

u

du
uudxxe

e

e

x

 

Key in a subroutine that evaluates the function f(u) = 9u
2
ln u. 

Keystrokes Display  

|¥  000- Program mode. 

´b3  001-42,21, 3  

|N  002-   43 12  

®  003-      34  

|x  004-   43 11  

*  005-      20  

9  006-       9  

*  007-      20  

|n  008-   43 32  

Key in the limits of integration, then press ´ f 3 to calculate the integral. 

Keystrokes Display  

|¥  Run mode. 

1v  1.000     00 Keys in lower limit of integration. 

0  0 Keys in upper limit of integration. 

´f3  1.000     00 Approximation to equivalent integral. 

®  3.020    -04 Uncertainty of approximation. 
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The approximation agrees with the value calculated In the previous problem for the same 

integral. 

Evaluating Difficult Integrals 

Certain conditions can prolong the time required to evaluate an integral or can cause 

inaccurate results. As discussed in the HP-15C Owner's Handbook, these conditions are 

related to the nature of the integrand over the interval of integration. 

One class of integrals that are difficult to calculate is improper integrals. An improper 

integral is one that involves ∞ in at least one of the following ways: 

  One or both limits of integration are ±∞, such as 






 due u2

. 

  The integrand tends to ±∞ someplace in the range of integration, such as 

1)ln(
1

0
 duu . 

  The integrand oscillates infinitely rapidly somewhere in the range of integration, 

such as 

½)cos(ln
1

0
 duu . 

Equally troublesome are nearly improper integrals, which are characterized by 

 The integrand or its first derivative or its first derivative changes wildly within a 

relatively narrow subinterval of the range of integration, or oscillates frequently 

across that range. 

The HP-15C attempts to deal with certain of the second type of improper integral by usually 

not sampling the integrand at the limits of integration. 

Because improper and nearly improper integrals are not uncommon in practice, you should 

recognize them and take measures to evaluate them accurately. The following examples 

illustrate techniques that are helpful. 

Consider the integrand 

2

2 )cos(ln2
)(

x

x
xf


 . 

This function loses its accuracy when x becomes small. This is caused by rounding cos(x
2
) to 

1, which drops information about how small x is. But by using u = cos(x
2
), you can evaluate 

the integrand as 
















.1if
cos

ln2

1if1

)(
1

u
u

u

u

xf  
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Although the branch for u=1 adds four steps to your subroutine, integration near x = 0 

becomes more accurate. 

As a second example, consider the integral 

 
















1

0 ln

1

1
dx

xx

x
. 

The derivative of the integrand approaches ∞ as x approaches 0, as shown in the illustration 

below. By substituting x = u
2
, the function becomes more well behaved, as shown in the 

second illustration. This integral is easily evaluated: 

 











1

0

2

ln)1)(1(

2
du

u

u

uu

u
. 

Don't replace (u + 1)(u − 1) by (u
2
 − 1) because as u approaches 1, the second expression 

loses to roundoff half of its significant digits and introduces to the integrand's graph a spike 

near u = 1. 

 

As another example, consider a function whose graph has a long tail that stretches out many, 

many times as far as the main "body" (where the graph is interesting)-a function like 

2

)( xexf      or     
102 10

1
)(




x
xg . 

Thin tails, like that of f(x), can be truncated without greatly degrading the accuracy or speed 

of integration. But g(x) has too wide a tail to ignore when calculating 


t

t
dxxg )(  

if t is large. 

For such functions, a substitution like x = a + b tan u works well, where a lies within the 

graph's main "body" and b is roughly its width. Doing this for f(x) from above with a = 0 and 

b = 1 gives 
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


 
t

u
t

duuedxxf
1tan

0

2tan

0
)tan1()(

2

, 

which is calculated readily even with t as large as 10
10

. Using the same substitution with g(x), 

values near a = 0 and b = 10
−5

 provide good results. 

This example involves subdividing the interval of integration. Although a function may have 

features that look extreme over the entire interval of integration, over portions of that interval 

the function may look more well-behaved. Subdividing the interval of integration works best 

when combined with appropriate substitutions. Consider the integral 

.)1/()1(1

)1/()(1

)1/()1(

)1/()1/(

)1/()1/()1/(

1

0

88/554/1
8

1

1

0

646462

1

0

6462

1

0

6462
1

0

64

1

64
1

0

64

0

64






















vdvvv

xdxxx

xdxx

uduuxdx

xdxxdxxdx

 

These steps use the substitutions x = 1/ u and x = v
1/8

 and some algebraic manipulation. 

Although the original integral is improper, the last integral is easily handled by f. In fact, 

by separating the constant term from the integral, you obtain (using i8) an answer with 

13 significant digits: 

1.000401708155 ± 1.2 × 10
−12

. 

A final example drawn from real life involves the electrostatic field about an ellipsoidal 

probe with principal semiaxes a, b, and c: 







0 2222 ))()(()( xcxbxaxa

dx
V  

for a=100, b =2, and c= 1.
§
 

Transform this improper integral to a proper one by substituting x = (a
2
 − c

2
)/(1 − u

2
) − a

2
: 

 
1

22 )/()1(
r

duquupV  

where 

62222 1000060018.2))((/2  bacap  

32222 10001200480.3)(/)(  bacbq  

                                                           

§ From Stratton, J.A., Electromagnetic Theory, McGraw-Hill, New York, 1941, pp.201-217. 
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01.0/  acr  

However, this integral is nearly improper because q and r are both so nearly zero. But by 

using an integral in closed form that sufficiently resembles the troublesome part of V, the 

difficulty can be avoided. Try 

.1084018188070.8

))/()11ln((

)ln(/

6

2

1
21 2





 

qrrqp

quupqudupW
rr

 

Then 

.
)11(1

/

)/1)/()1((

1

22

2

1
222

du
quu

u

r

pW
p

duququupWV

r

r



























 

The HP-15C readily handles this integral. Don't worry about 21 u  as u approaches 1 

because the figures lost to roundoff aren't needed. 

Application 

The following program calculates the values of four special functions for any argument x: 






 dtex t 2/2

2

1
)(P


 (normal distribution function) 





x

t dtexPx 2/2

2

1
)(1)(Q


 (complementary normal distribution function) 




x
t dtex

0

22
)(erf


 (error function) 





x

t dtexx
22

)(erf1)(erfc


 (complementary error function) 

The program calculates these functions using the transformation 
2teu  whenever |x| > 1.6. 

The function value is returned in the X-register, and the uncertainty of the integral is returned 

in the Y-register. (The uncertainty of the function value is approximately the same order of 

magnitude as the number in the Y-register.) The original argument is available in register R0. 
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The program has the following characteristics: 

 The display format specifies the accuracy of the integrand in the same way as it does 

for f itself. However, if you specify an unnecessarily large number of display 

digits, the calculation will be prolonged. 

 Small function values, such as Q(20), P(−20), and erfc(10), are accurately computed 

as quickly as moderate values. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11 Program for P(x). 

O2  002-   44  2 Stores x in R2. 

”  003-      16 Calculates −x. 

t2  004-   22  2 Branches to calculate P(x) = Q(−x). 

´bB  005-42,21,12 Program for Q(x). 

O2  006-   44  2 Stores x in R2. 

´b2  007-42,21, 2  

2  008-       2  

¤  009-      11  

÷  010-      10  

GC  011-   32 13 Calculates erfc( 2/x ). 

2  012-       2  

÷  013-      10 Calculates 

Q(x) = ½ erfc( 2/x ) 

l2  014-   45  2  

O0  015-   44  0 Stores x in R0. 

)  016-      33  

|n  017-   43 32 Returns function value. 

´bC  018-42,21,13 Program for erfc(x). 

1  019-       1  

G4  020-   32  4  

|?1  021-43, 6, 1 Tests flag 1 set. 

t5  022-   22  5 Branches for flag 1 set. 

1  023-       1  

-  024-      30 Calculates erf(x) – 1 for flag 1 clear. 

´b5  025-42,21, 5  

”  026-      16 Calculates erfc(x). 

|n  027-   43 32 Returns function value. 

´bE  028-42,21,15 Program for erf(x). 

0  029-       0  
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Keystrokes Display  

´b4  030-42,21, 4 Subroutine for erf(x) or erfc(x). 

|"1  031-43, 5, 1 Clears flag 1. 

O1  032-   44  1 Stores 0 for erf(x), 1 for erfc(x) 

®  033-      34  

O0  034-   44  0  

|a  035-   43 16 Calculates |x|. 

1  036-       1  

.  037-      48  

6  038-       6  

|T8  039-43,30, 8 Tests |x|>1.6. 

t6  040-   22  6 Branch for |x|>1.6. 

0  041-       0  

l0  042-   45  0 Recalls x. 

´f0  043-42,20, 0 Integrates 
2te from 0 to x. 

2  044-       2  

*  045-      20  

´b3  046-42,21, 3 Subroutine to divide by  . 

|$  047-   43,26  

¤  048-      11  

÷  049-      10  

|n  050-   43 32  

´b6  051-42,21, 6 Subroutine to integrate when |x| > 

1.6. 

|F1  052-43, 4, 1 Sets flag 1. 

0  053-       0  

l0  054-   45  0  

|x  055-   43 11  

”  056-      16  

'  057-      12 Calculates 
2xe . 

´f1  058-42,20, 1 Integrates (-ln u)
-1/2

 from 0 to 
2xe  

G3  059-   32  3 Divides integral by  . 

l0  060-   45  0  

v  061-      36  

|a  062-   43 16  

÷  063-      10 Calculates sign of x. 

*  064-      20  

l1  065-   45  1 Recalls 1 for erfc(x), 0 for erf(x). 

|K  066-   43 36  
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Keystrokes Display  

-  067-      30  

+  068-      40 Adjusts integral for sign of x and 

function. 

”  069-      16  

|n  070-   43 32  

´b0  071-42,21, 0 Subroutine to calculate 
2te . 

|x  072-   43 11  

”  073-      16  

'  074-      12  

|n  075-   43 32  

´b1  076-42,21, 1 Subroutine to calculate 

(-ln u)
−1/2

. 

|~  077-   43 20  

|n  078-   43 32  

|N  079-   43 12  

”  080-      16  

¤  081-      11  

⁄  082-      15  

|n  083-   43 32  

Labels used: A, B, C, E, 0, 1, 2, 3, 4, 5, and 6. 

Registers used: R0 (x), R1, R2. 

Flag used: 1. 

To use this program: 

1. Enter the argument x into the display. 

2. Evaluate the desired function: 

 Press ´A to evaluate P(x). 

 Press ´B to evaluate Q(x). 

 Press ´E to evaluate erf(x). 

 Press ´C to evaluate erfc(x). 

Example: Calculate Q(20), P(1.234), and erf(0.5) in i 3  display format. 

Keystrokes Display  

|¥  Run mode. 

´i3  Specifies format. 

20´B  2.754    -89 Q(20). 
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Keystrokes Display  

1.234´A  8.914    -01 P(1.234). 

.5´E  5.205    -01 erf(0.5). 

Example: For a Normally distributed random variable X with mean 2.151 and standard 

deviation 1.085, calculate the probability Pr [2 < X  3]. 








 








 









 








085.1

151.22

085.1

151.23

085.1

151.23

085.1

151.22
]32[

PP

X
PrXPr





 

Keystrokes Display  

2 v  2.000    -00  

2.151- -1.510    -01  

1.085÷ -1.392    -01  

´A  4.447    -01 Calculates Pr[X≤2]. 

O3  4.447    -01 Stores value. 

3 v  3.000     00  

2.151-  8.490    -01  

1.085÷  7.825    -01  

´A  7.830    -01 Calculates Pr[X≤3]. 

l3  4.447    -01 Recalls Pr[X≤2]. 

-  3.384    -01 Calculates Pr[2<X≤3]. 

´•4  0.3384  
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Section 3: 

Calculating in Complex Mode 

Physically important problems involving real data are often solved by performing relatively 

simple calculations using complex numbers. This section gives important insights into 

complex computation and shows several examples of solving problems involving complex 

numbers. 

Using Complex Mode 

Complex mode in the HP-15C enables you to evaluate complex-valued expressions simply. 

Generally, in Complex mode a mathematical expression is entered in the same manner as in 

the normal "real" mode. For example, consider a program that evaluates the polynomial   

P(x) = anx
n
 + ... + a1x + a0 for the value x in the X-register. By activating Complex mode, this 

same program can evaluate P(z), where z is complex. Similarly, other expressions, such as 

the Gamma function (x) in the next example, can be evaluated for complex arguments in 

Complex mode. 

Example: Write a program that evaluates the continued-fraction approximation 








x

a
x

a
x

a
xx

3

2

1
0a x-½)ln x())(ln(  

for the first six values of a: 

a0 = ½ ln(2π) 

a1 = 1/12 

a2 = 1/30 

a3 = 53/210 

a4 = 195/371 

a5 = 1.011523068 

a6 = 1.517473649. 

Because this approximation is valid for both real arguments and complex arguments with 

Re(z) > 0, this program approximates ln((z)) in Complex mode (for sufficiently large |z|). 

When |z| > 4 (and Re(z) > 0), the approximation has about 9 or 10 accurate digits. 

Enter the following program. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11  
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Keystrokes Display  

6  002-       6  

OV  003-   44 25 Stores counter in Index register. 

®  004-      34  

v  005-      36  

v  006-      36  

v  007-      36 Fills stack with z. 

l6 008-   45, 6 Recalls a6. 

´b1  009-42,21, 1 Loop for continued fraction 

+  010-      40  

l%  011-   45 24 Recalls ai. 

®  012-      34 Restores z. 

÷  013-      10  

´eV  014-42, 5,25 Decrements counter. 

t1  015-   22  1  

l0  016-   45  0 Recalls a0. 

+  017-      40  

®  018-      34 Restores z. 

-  019-      30  

|K  020-   43 36 Recalls z. 

|N  021-   43 12 Calculates ln(z). 

|K  022-   43 36 Recalls z. 

.  023-      48  

5  024-       5  

-  025-      30 Calculates z – ½. 

*  026-      20  

+  027-      40 Calculates ln(Γ(z)). 

|n  028-   43 32  

Store the constants in registers R0 through R6 in order according to their subscripts. 

Keystrokes Display  

|¥  Run mode. 

2|$*  6.2832  

|N2÷  0.9189  

O0  0.9189 Stores a0. 

12⁄O1  0.0833 Stores a1. 

30⁄O2  0.0333 Stores a2. 

53v210÷  0.2524  

O3  0.2524 Stores a3. 
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Keystrokes Display  

195v371÷  0.5256  

O4  0.5256 Stores a4. 

1.011523068O5  1.0115 Stores a5. 

1.517473649 O6  1.5175 Stores a6. 

Use this program to calculate ln((4.2)), then compare it with ln(3.2!) calculated with the 

! function. Also calculate ln((1 + 5i)). 

Keystrokes Display  

4.2´A  2.0486 Calculates ln((4.2)). 

´•9  2.048555637 Displays 10 digits. 

3.2´!  7.756689536 Calculates (3.2)! = (3.2+1). 

|N  2.048555637 Calculates ln(3.2!). 

1v  1.000000000 Enters real part of 1 + 5i. 

5´V  1.000000000 Forms complex number 

1 + 5i. 

´A -6.130324145 Real part of ln((1 + 5i)). 

´}  3.815898575 Imaginary part of 

ln((1 + 5i)). 

´•4  3.8159  

The complex result is calculated with no more effort than that needed to enter the imaginary 

part of the argument z. (The result ln((1 + 5i)) has 10 correct digits in each component.) 

Trigonometric Modes 

Although the trigonometric mode annunciator remains lit in Complex mode, complex 

functions are always computed using radian measure. The annunciator indicates the mode 

(Degrees, Radians, or Grads) for only the two complex conversions: : and ;. 

If you want to evaluate re
i 

where  is in degrees, ' can't be used directly because  must 

be in radians. If you attempt to convert from degrees to radians, there is a slight loss of 

accuracy, especially at values like 180° for which the radian measure  can't be represented 

exactly with 10 digits. 

However, in Complex mode the ; function computes re
i

 accurately for  in any measure 

(indicated by the annunciator). Simply enter r and  into the complex X-registers in the form 

r + i, then execute ; to calculate the complex value 

re
i

 = r cos  + ir sin . 

(The program listed under Calculating the n th Roots of a Complex Number at the end of this 

section uses this function.) 
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Definitions of Math Functions 

The lists that follow define the operation of the HP-15C in Complex mode. In these 

definitions, a complex number is denoted by z = x + iy (rectangular form) or z = re
i

 (polar 

form). Also 22 yxz  . 

Arithmetic Operations 

(a + ib) ± (c + id) = (a ± c) + i(b ± d) 

(a + ib)(c + id) = (ac − bd) + i(ad + bc) 

z
2
 = z × z 

1/z = x / |z|
2
 – iy / |z|

2 

z1 ÷ z2 = z1 × 1/z2 

Single Valued Functions 

e
z
 = e

x
(cos y + i sin y) 

10
z
 = e

z ln10 

)(
2

1
sin iziz ee

i
z   

cos z = ½(e
iz
 + e

−iz
) 

tan z = sin z / cos z 

sinh z = ½(e
z
 − e

−z
) 

cosh z = ½(e
z
 + e

−z
) 

tanh z = sinh z / cosh z 

Multivalued Functions 

In general, the inverse of a function f(z)—denoted by f
−1

(z) —has more than one value for 

any argument z. For example, cos
−1

(z) has infinitely many values for each argument. But the 

HP-15C calculates the single principal value, which lies in the part of the range defined as 

the principal branch of f
−1

(z). In the discussion that follows, the single-valued inverse 

function (restricted to the principal branch) is denoted by uppercase letters-such as 

COS
−1

(z)—to distinguish it from the multivalued inverse—cos
−1

(z). 

For example, consider the nth roots of a complex number z. Write z in polar form as               

z = re
i( + 2kπ)

 for  − <  <  and k = 0, ±1, ±2, …. Then if n is a positive integer, 

z
1/n

 = r
1/n 

e
i( / n+2k / n)

 = r
/ n 

e
i / n 

e
i2k / n

 . 

Only k = 0,1, ... , n − 1 are necessary since e
i2kπ / n

 repeats its values in cycles of n. The 

equation defines the nth roots of z, and r
1/n

e
i / n

 with − <  < is the principal branch of z
1/n

. 

(A program listed on page 67 computes the nth roots of z.) 
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The illustrations that follow show the principal branches of the inverse relations. The left-

hand graph in each figure represents the cut domain of the inverse function; the right-hand 

graph shows the range of the principal branch. 

For some inverse relations, the definitions of the principal branches are not universally 

agreed upon. The principal branches used by the HP-15C were carefully chosen. First, they 

are analytic in the regions where the arguments of the real-valued inverse functions are 

defined. That is, the branch cut occurs where its corresponding real-valued inverse function 

is undefined. Second, most of the important symmetries are preserved. For example, 

SIN
−1

(−z) = -SIN
−1

(z) for all z. 
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The principal branches in the last four graphs above are obtained from the equations shown, 

but don't necessarily use the principal branches of ln(z) and z . 

The remaining inverse functions may be determined from the illustrations above and the 

following equations: 

      LOG(z)  =  LN(z) / LN(10) 

  SINH
−1

(z)  =  −i SIN
−1

(iz) 

TANH
−1

(z)  =  −i TAN
−1

(iz) 

      w
z
  =  e

z LN(w)
. 

To determine all values of an inverse relation, use the following expressions to derive these 

values from the principal value calculated by the HP-15C. In these expressions, k= 0, ±1, ±2, 

... . 

            z 
½
  =  ± z  

         ln(z)  =  LN(z) + i2kπ 

      sin
-1

(z)  =  (−1)
k
 SIN

-1
(z) + kπ 

     cos
-1

(z)  =  ±COS
-1

(z) + 2kπ 

      tan
-1

(z)  =  TAN
-1

(z) + kπ 

     sinh
-1

(z)  =  (−1)
k
 SINH

-1
(z) + ikπ 

    cosh
-1

(z)  =  ±COSH
-1

(z) + i2kπ 

    tanh
-1

(z)  =  TANH
-1

(z) + ikπ 

 w
z
  =  w

z
e

i2πkz
. 
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Using _ and f in Complex Mode 

The _ and f functions use algorithms that sample your function at values along the 

real axis. In Complex mode, the _ and f functions operate with only the real stack, 

even though your function subroutine may have complex computations in it. 

For example, _ will not search for the roots of a complex function, but rather will 

sample the function on the real axis and search for a zero of the function's real part. 

Similarly, f computes the integral of the function's real part along an interval on the real 

axis. These operations are useful in various applications, such as calculating contour integrals 

and complex potentials. (Refer to Applications at the end of this section.) 

Accuracy in Complex Mode 

Because complex numbers have both real components and imaginary components, the 

accuracy of complex calculations takes on another dimension compared to real-valued 

calculations. 

When dealing with real numbers, an approximation X is close to x if the relative difference 

E(X,x) = |(X − x)/x| is small. This relates directly to the number of correct significant digits of 

the approximation X. That is, if E(X,x) < 5×10
−n

, then there are at least n significant digits. 

For complex numbers, define E(Z,z) = |(Z - z)/z|. This does not relate directly to the number 

of correct digits in each component of Z, however. 

For example, if E(X,x) and E(Y,y) are both small, then for z = x + iy, E(Z,z) must also be 

small. That is, if E(X,x) < s and E(Y,y) < s, then E(Z,z) < s. But consider z = 10
10

 + i and Z = 

10
10

. The imaginary component of Z is far from accurate, and yet E(Z,z) < 10
−10

. Even though 

the imaginary components of z and Z are completely different, in a relative sense z and Z are 

extremely close. 

There is a simple, geometric interpretation of the complex relative error. Any approximation 

Z of z satisfies E(Z,z) < s (where s is a positive real number) if and only if Z lies inside the 

circle of radius s|z| centered at z in the complex plane. 
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To require approximations with accurate components is to demand more than keeping 

relative errors small. For example, consider this problem in which the calculations are done 

with four significant digits. It illustrates the limitations imposed on a complex calculation by 

finite accuracy. 

z1 = Z1 = 37.1 + 37.3i 

z2 = Z2 = 37.5 + 37.3i 

and  

Z1 × Z2 

= (37.10 × 37.50 − 37.30 × 37.30) + i(37.10 × 37.30 + 37.30 × 37.50) 

= (1391. − 1391.) + i(1384. + 1399.) 

= 0 + i(2783.) 

The true value z1z2 = −0.04 + 2782.58i. Even though Z1 and Z2 have no error, the real part of 

their four-digit product has no correct significant decimals, although the relative error of the 

complex product is less than 2 × 10
−4

. 

The example illustrates that complex multiplication doesn't propagate its errors component 

wise. But even if complex multiplication produced accurate components, the rounding errors 

of a chain computation could quickly produce inaccurate components. On the other hand, the 

relative error, which corresponds to the precision of the calculation, grows only slowly. 

For example, using four-digit accuracy as before 

z1 = (1 + 1/300) + i 

Z1 = 1.003 + i 

z2 = Z2 = 1 + i 

then 

Z1 × Z2  =  (1.003 + i) × (1 + i) 

 =  0.003 + 2.003i 

 =  3.000 × 10
−3

 + 2.003i 

The correct four-digit value is 3.333 × 10
−3

 + 2.003i. In this example, Zl and Z2 are accurate 

in each component and the arithmetic is exact. But the product is inaccurate-that is, the real 

component has only one significant digit. One rounding error causes an inaccurate 

component, although the complex relative error of the product remains small. 

For the HP-15C the results of any complex operation are designed to be accurate in the sense 

that the complex relative error E(Z,z) is kept small. Generally, E(Z,z) < 6 × 10
−10

. 

As shown earlier, this small relative error doesn't guarantee 10 accurate digits in each 

component. Because the error is relative to the size |z|, and because this is not greatly 

different from the size of the largest component of z, the smaller component can have fewer 

accurate digits. There is a quick way for you to see which digits are generally accurate. 

Express each component using the largest exponent. In this form, approximately the first 10 

digits of each component are accurate. For example, if 

Z = 1.234567890 × 10
−10

 + i(2.222222222 × 10
−3

), 
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then think of Z as 

0.0000001234567890 × 10
−3

 + i(2.222222222 × 10
−3

). 

then the accurate digits are 

0.000000123 × 10
−3

 + i(2.222222222 × 10
−3

). 

Applications 

The capability of the HP-15C to work with complex numbers enables you to solve problems 

that extend beyond the realm of real-valued numbers. On the following pages are several 

programs that illustrate the usefulness of complex calculations—and the HP-15C. 

Storing and Recalling Complex Numbers Using a Matrix 

This program uses the stack and matrix C to store and recall complex numbers. It has the 

following characteristics: 

 If you specify an index greater than the matrix's dimensions, the calculator displays 

Error 3 and the stack is ready for another try. 

 If the calculator isn't in Complex mode, the program activates Complex mode and the 

imaginary part of the number is set to zero. 

 When you store a complex number, the index is lost, the stack drops, and the            

T-register is duplicated in the Z-register. 

 The "Store" program uses the Á key, which is above the O key. The "Recall" 

program uses the E key, which is above the l key. 

Keystrokes Display  

|¥  Program mode. 

´ CLEARM 000-  

´bÁ 001-42,21,14 “Store” program. 

´>1 002-42,16, 1 Sets R0 = R1 = 1. 

O0 003-   44  0 R0 = k. 

) 004-      33  

0 005-       0 Enters 0 in real (and imaginary) 

X-registers. 

+ 006-      40 Drops stack and has a + ib in 

X-register. 

´UOC 
´U 

007u   44 13 Stores a and increments indices 

(User mode). 

´} 008-   42 30  

OC  009-   44 13 Stores b (no User mode here). 

´}  010-   42 30 Restores a + ib in X-registers. 
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Keystrokes Display  

|n  011-   43 32  

´bE  012-42,21,15 “Recall” program. 

O0  013-   44  0 R0 = k. 

|`  014-   43 35 Disables stack. 

2  015-       2  

O1  016-   44  1 Sets R1 = 2. 

)  017-      33  

0  018-       0  

+  019-      40 Sets stack for another try if 

Error 3 occurs next. 

lC  020-   45 13 Recalls b (imaginary part). 

´}  021-   42 30  

´s1  022-42, 5, 1 Decrements R1 = 1. 

|`  023-   43 35 Disables stack and clears real 

X-register. 

lC  024-   45 13 Recalls a (real part). 

|n  025-   43 32  

Example: Store 2 + 3i and 7 + 4i in elements 1 and 2 using the previous program. Then 

recall and add them. Dimension matrix C to 5 x 2 so that it can store up to 5 complex 

numbers. 

After entering the preceding program: 

Keystrokes Display  

|¥  Run mode. 

5v2  2 Specifies 5 rows and 2 

columns. 

´mC  2.0000 Dimensions matrix C. 

2v3´V  2.0000 Enters 2 + 3i. 

1´Á  2.0000 Stores number in C using 

index 1. 

7v4´V  7.0000 Enters 7 + 4i. 

2´Á  7.0000 Stores number in C using 

index 2. 

1´E  2.0000 Recalls first number. 

2´E  7.0000 Recalls second number. 

+  9.0000 Real part of sum. 

´}  7.0000 Imaginary part of sum. 
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Calculating the nth Roots of a Complex Number 

This program calculates the nth roots of a complex number. The roots are zk for k = 0, 1, 2, ... 

, n - 1. You can also use the program to calculate z
1/r

, where r isn't necessarily an integer. The 

program operates the same way except that there may be infinitely many roots zk for k = 0, 

±1, ±2, ... . 

Keystrokes Display  

|¥  Program mode. 

´ CLEARM  000-  

´bA  001-42,21,11  

®  002-      34 Places n in X-register, z in Y-

register. 

⁄  003-      15 Calculates 1/n. 

| K  004-   43 36 Retrieves n. 

)  005-      33  

|F8  006-43, 4, 8 Activates Complex mode. 

Y  007-      14 Calculates z
1 / n

. 

O2  008-   44  2 Stores real part of z0 in R2. 

´}  009-   42 30  

O3  010-   44  3 Stores imaginary part of z0 in 

R3. 

3  011-       3  

6  012-       6  

0  013-       0  

|(  014-   43 33  

÷  015-      10 Calculates 360/n. 

O4  016-   44  4 Stores 360/n in R4. 

0  017-       0  

OV  018-   44 25 Stores 0 in Index register. 

´b0  019-42,21, 0  

l4  020-   45  4 Recalls 360/n. 

l*V  021-45,20,25 Calculates 360k/n using Index 

register, 

´}  022-   42 30  

|`  023-   43 35  

1  024-       1 Places 1 + i(k360/n) in the X-

register. 

| D  025-   43  7 Sets Degrees mode. 

´;  026-   42  1 Calculates e
ik360 / n

. 

l2  027-   45  2 Recalls real part of z0. 

l3  028-   45  3 Recalls imaginary part of z0. 
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Keystrokes Display  

´V  029-   42 25 Forms complex z0. 

*  030-      20 Calculates z0e
ik360 / n

, root 

number k. 

lV  031-   45 25 Recalls number k. 

®  032-      34 Places zk in X-registers, k in Y-

register. 

1  033-       1  

O+V  034-44,40,25 Increments number k in Index 

register. 

)  035-      33 Restores zk and k to X- and Y-

registers. 

¦  036-      31 Halts execution. 

t0  037-   22  0 Branch for next root. 

Labels used: A and 0. 

Registers used: R2, R3, R4, and Index register. 

To use this program: 

1. Enter the order n into the Y-register and the complex number z into the X-registers. 

2. Press ´A to calculate the principal root z0 which placed in the real and imaginary X-

registers. (Press´% and hold to view the imaginary part). 

3. To calculate higher number roots zk: 

 Press ¦ to calculate each successive higher-number root. Each root zk is placed in 

the complex X-registers and its number k is placed in the Y-register. Between root 

calculations, you can perform other calculations without disturbing this program (if 

R2, R3, R4, and the Index register aren't changed). 

 Store the number of the root k in the Index register (using OV then press ¦ 
to calculate zk. The complex root and its number are placed in the X- and Y-registers, 

respectively. (By pressing ¦ again, you can continue calculating higher-number 

roots.) 

Example: Use the previous program to compute (1)
1/100

.  Calculate z0, z1, z50 for this 

expression. 

Keystrokes Display  

|¥  Run mode. 

100v1  1 Enters n = 100 and z = 1 (purely 

real). 

´A  1.0000 Calculates z0 (real part). 

´% (hold)  0.0000 Imaginary part of z0. 
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Keystrokes Display  

¦  0.9980 Calculates z1 (real part). 

´% (hold)  0.0628 Imaginary part of z1. 

50O V  50.0000 Stores root number in Index 

register. 

¦ -1.0000 Calculates z50 (real part). 

´% (hold)  0.0000 Imaginary part of z50 

Solving an Equation for Its Complex Roots 

A common method for solving the complex equation f(z) = 0 numerically is Newton's 

iteration. This method starts with an approximation z0 to a root and repeatedly calculates 

zk + 1 = zk – f(zk) / f’(zk) 

Until zk converges. 

The following example shows how _ can be used with Newton’s iteration to estimate 

complex roots. (A different technique that doesn't use Complex mode is mentioned on page 

18.) 

Example: The response of an automatically controlled system to small transient 

perturbations has been modeled by the differential delay equation 

0)1(8)(9)(  twtwtw
dt

d
. 

How stable is this system? In other words, how rapidly do solutions of this equation decay? 

Every solution w(t) is known to be expressible as a sum 


k

ztezctw )()(  

involving constant coefficients c(z) chosen for each root z of the differential-delay equation's 

associated characteristic equation: 

z + 9 + 8e
−z

 = 0 

Every root z = x + iy contributes to w(t) a component e
zt
 = e

xt
(cos(yt) + i sin(yt)) whose rate 

of decay is faster as x, the real part of z, is more negative. Therefore, the answer to the 

question entails the calculation of all the roots z of the characteristic equation. Since that 

equation has infinitely many roots, none of them real, the calculation of all roots could be a 

large task. 

However, the roots z are known to be approximated for large integers n by                              

z ≈ A(n) = -ln((2n + ½)π/8) ± i(2n + ½) π for n = 0, 1,2, .... The bigger is n, the better is the 

approximation. Therefore you need calculate only the few roots not well approximated by 

A(n) —the roots with |z| not very big. 

When using Newton's iteration, what should f(z) be for this problem? The obvious function 

f(z) = z + 9 + 8e
-z
 isn't a good choice because the exponential grows rapidly for larger 
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negative values of Re(z). This would slow convergence considerably unless the first guess z0 

were extremely close to a root. In addition, this f(z) vanishes infinitely often, so it's difficult 

to determine when all desired roots have been calculated. But by rewriting this equation as 

e
z
 = −8/(z + 9) 

and taking logarithms, you obtain an equivalent equation 

z = ln(−8/(z + 9)) ± i2nπ for n = 0, 1, 2, …. 

This equation has only two complex conjugate roots z for each integer n. Therefore use the 

equivalent function 

f(z) = z − ln(−8/(z + 9)) ± i2nπ for n = 0, 1, 2, …. 

and apply Newton’s iteration 

zk + 1 = zk − (zk − ln(−8/(zk + 9)) ± i2nπ) / (1 + 1/(zk + 9)). 

As a first guess, choose z0 as A(n), the approximation given earlier. A bit of algebraic 

rearrangement using the fact that ln(±i) = ±i π/2 leads to this formula: 

zk + 1 = A(n) + ((zk − A(n)) + (zk + 9)ln(iIm(A(n)) / (zk + 9))) / (zk + 10). 

In the program below, Re(A(n)) is stored in R0 and Im(A(n)) is stored in R1. Note that only 

one of each conjugate pair of roots is calculated for each n. 

Keystrokes Display  

|¥  Program mode 

´ CLEARM  000-  

´bA  001-42,21,11 Program for A(n). 

|"8  002-43, 5, 8 Specifies real arithmetic. 

v  003-      36  

+  004-      40  

.  005-      48  

5  006-       5  

+  007-      40  

|$  008-   43 26  

*  009-      20 Calculates (2n + ½)π. 

v  010-      36  

O1  011-   44  1  

8  012-       8  

÷  013-      10  

|N  014-   43 12  

”  015-      16 Calculates –ln((2n + ½)π/8). 
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Keystrokes Display  

O0  016-   44  0  

®  017-      34  

´V  018-   42 25 Forms complex A(n). 

|n  019-   43 32  

´bB  020-42,21,12 Program for zk + 1. 

v  021-      36  

v  022-      36  

l1  023-   45  1  

´}  024-   42 30 Creates i Im(A(n)). 

®  025-      34  

9  026-       9  

+  027-      40  

÷  028-      10  

|K  029-   43 36  

®  030-      34  

|N  031-   43 12  

*  032-      20  

®  033-      34  

l1  034-   45  1  

´}  035-   42 30  

l+0  036-45,40, 0  

-  037-      30  

|K  038-   43 36  

)  039-      33  

+  040       40  

®  041-      34  

1  042-       1  

0  043-       0  

+  044-      40  

÷  045-      10  

+  046-      40  

|n  047-   43 32  

´bC  048-42,21,13 Program for residual, 

|e
2
 + 8/(z + 9)|. 

v  049-      36  

'  050-      12  

9  051-       9  

|K  052-   43 36  

+  053-      40  
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Keystrokes Display  

8  054-       8  

®  055-      34  

÷  056-      10  

+  057-      40  

|a  058-   43 16 Calculates |e
z
 + 8/(z + 9)|. 

|n  059-   43 32  

Labels used: A, B, and C. 

Registers used: R0 and R1. 

Now run the program. For each root, press B until the displayed real part doesn't change. 

(You might also check that the imaginary part doesn't change.) 

Keystrokes Display  

|¥  Run mode. 

´U  Activates User mode. 

0A  1.6279 Displays Re(A(0)) = Re(z0). 

B -0.1487 Re(z1). 

B -0.1497 Re(z2). 

B -0.1497 Re(z). 

´% (hold)  2.8319 Im(z). 

C  1.0000   -10 Calculates residual. 

® -0.1497 Restores z to X-register. 

By repeating the same process for n = 1 through 5, you will obtain the results listed below. 

(Only one of each pair of complex roots is listed.) 

n A(n) Root zk Residual 

0 1.6279 + i1.5708 -0.1497 + i2.8319 1 × 10−10 

1 0.0184 + i7.8540 -0.4198 + i 8.6361 6 × 10−10 

2 -0.5694 + i14.1372 -0.7430 + i14.6504 2 × 10−9 

3 -0.9371 + i20.4204 -1.0236 + i20.7868 5 × 10−10 

4 -1.2054 + i26.7035 -1.2553 + i26.9830 9 × 10−10 

5 -1.1467 + i32.9867 -1.4486 + i33.2103 2 × 10−9 

As n increases, the first guess A(n) comes ever closer to the desired root z. (When you're 

finished, press ´U to deactivate User mode.) 
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Since all roots have negative real parts, the system is stable, but the margin of stability (the 

smallest in magnitude among the real parts, namely -0.1497) is small enough to cause 

concern if the system must withstand much noise. 

Contour Integrals 

You can use f to evaluate the contour integral C dzzf )( , where C is a curve in the complex 

plane. 

First parameterize the curve C by z(t)= x(t) + i y(t) for t1 ≤  t ≤ t2. Let G(t)=f(z(t))z’(t). Then 



 





2

1

2

1

2

1

))(Im())(Re(

)()(

t

t

t

t

C

t

t

dttGidttG

dttGdzzf

 

These integrals are precisely the type that f evaluates in Complex mode. Since G(t) is a 

complex function of a real variable t, f will sample G(t) on the interval t1 ≤  t ≤ t2 and 

integrate Re(G(t))—the value that your function returns to the real X-register. For the 

imaginary part, integrate a function that evaluates G(t) and uses } to place Im(G(t)) 

into the real X-register. 

The general-purpose program listed below evaluates the complex integral 


b

a
dzzfI )(  

along the straight line from a to b, where a and b are complex numbers. The program 

assumes that your complex function subroutine is labeled "B" and evaluates the complex 

function f(z), and that the limits a and b are in the complex Y- and X-registers, respectively. 

The complex components of the integral I and the uncertainty ΔI are returned in the X- and 

Y-registers. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11  

®  002-      34  

-  003-      30 Calculates b – a. 

O4  004    44  4 Stores Re(b – a) in R4. 

´}  005-   42 30  

O5  006-   44  5 Stores Im(b – a) in R5. 

|K  007-   43 36 Recalls a. 

O6  008-   44  6 Stores Re(a) in R6. 

´}  009-   42 30  

O7  010-   44  7 Stores Im(a) in R7. 

0  011-       0  
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Keystrokes Display  

v  012-      36  

1  013-       1  

´f0  014-42,20, 0 Calculates Im(I) and Im(ΔI). 

O2  015-   44  2 Stores Im(I) in R2. 

)  016-      33  

O3  017-   44  3 Stores Im(ΔI) in R3. 

)  018-      33  

´f1  019-42,20, 1 Calculates Re(I) and Re(ΔI). 

l2  020-   45  2  

´V  021-   42 25 Forms Complex I. 

®  022-      34  

l3  023-   45  3 Recalls Im(ΔI) 

´V  024-   42 25 Forms Complex ΔI. 

®  025-      34 Restores I to X-register. 

|n  026-   43 32  

´b0  027-42,21, 0 Subroutine for Im(f(z)z’(t)). 

G1  028-   32  1  

´}  029-   42 30 Swaps complex components. 

|n  030-   43 32  

´b1  031-42,21, 1 Subrouting to calculate f(z)z’(t). 

l4  032-   45  4  

l5  033-   45  5  

´V  034-   42 25 Forms complex b – a. 

*  035-      20 Calculates (b – a)t. 

l6  036-   45  6  

l7  037-   45  7  

´V  038-   42 25 Forms complex a. 

+  039-      40 Calculates a + (b – a)t. 

GB  040-   32 12 Calculates f(a + (b – a)t). 

l4  041-   45  4  

l5  042-   45  5  

´V  043-   42 25 Forms complex z’(t) = b – a. 

*  044-      20 Calculates f(z)z’(t) 

|n  045-   43 32  

Labels used: A, 0, and 1. 

Registers used: R2, R3, R4, R5, R6, and R7. 
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To use this program: 

1. Enter your function subroutine labeled "B" into program memory. 

2. Press 7´m% to reserve registers R0 through R7. (Your subroutine may 

require additional registers.) 

3. Set the display format for f. 

4. Enter the two complex points that define the ends of the straight line that your 

function will be integrated along. The lower limit should be in the Y-registers; the 

upper limit should be in the X-registers. 

5. Press ´A to calculate the complex line integral. The value of the integral is in 

the X-registers; the value of the uncertainty is in the Y-registers, 

Because two integrals are being evaluated, the f program will usually take longer than a 

real integral, although the routine doesn't have to use the same number of sample points for 

both integrals. The easier integral will use less calculation than the more difficult one. 

Example: Approximate the integrals 







1
1

/1

cos
dx

xx

x
I    and    






1
2

/1

sin
dx

xx

x
I . 

These integrands decay very slowly as x approaches infinity and therefore require a long    

interval of integration and a long execution time. You can expedite this calculation by 

deforming the path of integration from the real axis into the complex plane. According to 

complex variable theory, these integrals can be combined as 







i
iz

dz
zz

e
iII

1

1
21

/1 .
 

This complex integrand, evaluated along the line x=1 and y≥ 0, decays rapidly as y 

increases—like e
-y

. 

To use the previous program to calculate both integrals at the same time, write a subroutine 

to evaluate 

zz

e
zf

iz

/1
)(


 . 

Keystrokes Display  

´bB  046-42,21,12  

⁄  047-      15  

|K  048-   43 36  

+  049-      40 Calculates z + 1/z. 

|K  050-   43 36  

1  051-       1  

´}  052-   42 30 Forms 0 + i. 

*  053-      20  
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Keystrokes Display  

'  054-      12 Calculates e
iz
. 

®  055-      34  

÷  056-      10 Calculates f(z). 

|n  057-   43 32  

Approximate the complex integral by integrating the function from 1 + 0i to 1 + 6i using a 

i2 display format to obtain three significant digits. (The integral beyond 1 + 6i doesn't 

affect the first three digits.) 

Keystrokes Display  

|¥  Run mode. 

´i2  Specifies i2 format. 

1v  1.00      00 Enters first limit of integration, 

1 + 0i. 

1v6  6  

´V  1.00      00 Enters second limit of 

integration, 1 + 6i. 

´A -3.24     -01 Calculates I and displays Re(I) 

= I1. 

´% (hold)  3.82     -01 Displays Im(I) = I2. 

®  7.87     -04 Displays Re(ΔI) = ΔI1. 

´% (hold)  1.23     -03 Displays Im(ΔI) = ΔI2. 

´•4  0.0008  

This result I is calculated much more quickly than if I1 and I2 were calculated directly along 

the real axis. . 

Complex Potentials 

Conformal mapping is useful in applications associated with a complex potential function. 

The discussion that follows deals with the problem of fluid flow, although problems in 

electrostatics and heat flow are analogous. 

Consider the potential function P(z). The equation Im(P(z)) = c defines a family of curves 

that are called streamlines of the flow. That is, for any value of c, all values of z that satisfy 

the equation lie on a streamline corresponding to that value of c. To calculate some points zk 

on the streamline, specify some values for xk and then use _ to find the corresponding 

values of yk using the equation 

Im(P(xk + iyk)) = c. 

If the xk values are not too far apart, you can use yk-1 as an initial estimate for yk. In this way, 

you can work along the streamline and calculate the complex points zk = xk + iyk. Using a 

similar procedure, you can define the equipotential lines, which are given by Re(P(z)) = c. 
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The program listed below is set up to compute the values of yk from evenly spaced values of  

xk. You must provide a subroutine labeled "B" that places Im(P(z)) in the real X-register. The 

program uses inputs that specify the step size h, the number of points n along the real axis, 

and z0 = x0 + iy0,  the initial point on the streamline. You must enter n, h, and z0 into the Z-, 

Y-, and X-registers before running the program. 

The program computes the values of zk and stores them in matrix A in the form ak1 = xk-1 and 

ak2 = yk-1 for k = 1, 2, ... , n. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11  

)  002-      33  

O4  003-   44  4 Stores h in R4. 

)  004-      33  

2  005-       2  

´mA  006-42,23,11 Dimensions matrix A to be n×2. 

|`  007-   43 35  

O>A  008-44,16,11 Makes all elements of A be 

zero. 

OV  009-   44 25 Stores zero in Index register. 

´>1  010-42,16, 1 Sets R0 = R1 = 1. 

|(  011-   43 33 Recalls z0 to X-registers. 

O2  012-   44  2 Stores x0 in R2. 

´UOA 
´U 

013u   44 11 Sets a11 = x0. 

´} 014-   42 30  

O3 015-   44  3 Stores y0 in R3. 

´UOA  016u   44 11 Sets a12 = y0. 

´Ut1  017-   22  1 Brances if matrix A not  

full (n > 1). 

´b0  018-42,21, 0  

l>A  019-45,16,11 Recalls descriptor of matrix A. 

|n  020-   43 32  

´b1  021-42,21, 1  

´}  022-   42 30 Restores z0. 

GB  023-   32 12 Calculates Im(P(z0)) (or 

Re(P(z0)) for equipotential line.) 

O5  024-   44  5 Stores c in R5. 

´b2  025-42,21, 2 Loop for finding yk. 

1  026-       1  
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Keystrokes Display  

O+V 027-44,40,25 Increments counter k in Index 

register. 

l4  028-   45  4 Recalls h. 

lV  029-   45 25 Recalls counter k. 

*  030-      20 Calculates kh. 

l2  031-   45  2 Recalls x0. 

+  032-      40 Calculates xk = x0 + kh. 

O6  033-   44  6 Stores xk in R6. 

l3  034-   45  3 Recalls yk – 1 from R3. 

v  035-      36 Duplicates yk – 1 for second 

estimate. 

´_3  036-42,10, 3 Searches for yk. 

t4  037-   22  4 Branches for valid yk root. 

1  038-       1 Starts decreasing step size. 

O-V  039-44,30,25 Decrements counter k. 

4  040-       4  

O÷4  041-44,10, 4 Reduces h by factor of 4. 

O*V  042-44,20,25 Multiplies counter by 4. 

t2  043-   22  2 Loops back to find yk again. 

´b4  044-42,21, 4 Continues finding yk. 

l6  045-   45  6  

´©  046-   42 31 Displays xk. 

´UOA  047u   44 11 Sets ak + 1, 1 = xk. 

´U   

)  048-      33  

´©  049-   42 31 Displays yk. 

O3  050-   44  3 Stores yk in R3. 

´UOA 
´U 

 051u   44 11 Sets ak + 1, 2 = yk. 

t2  052-   22  2 Branch for k + 1 < n (A isn’t 

full). 

t0  053-   22  0 Branch for k + 1 = n (A is full). 

´b3  054-42,21, 3 Function subrouting for _. 

l6  055-   45  6 Recalls xk. 

®  056-      34 Restores current estimate for yk. 

´V  057-   42 25 Creates estimate zk = xk + iyk. 

GB  058-   32 12 Calculates Im(P(zk)) (or 

Re(P(zk)) for equipotential 

lines). 
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Keystrokes Display  

l5  059-   45  5 Recalls c. 

-  060-      30 Calculates Im(P(zk)) – c. 

|n  061-   43 32  

Labels used: A, B, 0, 1, 2, 3, and 4. 

Registers used: R0, R1, R2 (x0), R3 (y0), R4 (h), R5 (c), R6 (xk), and Index register (k). 

Matrix used: A. 

One special feature of this program is that if an xk value lies beyond the domain of the 

streamline (so that there is no root for _ to find), then the step size is decreased so that 

xk approaches the boundary where the streamline turns back. This feature is useful for 

determining the nature of the streamline when yk isn't a single-valued function of xk. If h is 

small enough, the values of zk will lie on one branch of the streamline and approach the 

boundary. (The second example below illustrates this feature.) 

To use this program: 

1. Enter your subroutine labeled "B" into program memory. It should place into the real 

X-register Im(P(z)) when calculating streamlines or Re(P(z)) when calculating 

equipotential lines. 

2. Press 6´m% to reserve registers R0 through R6 (and the Index register). 

(Your subroutine may require additional registers.) 

3. Enter the values of n and h into the Z- and Y-registers by pressing 

nvhv. 

4. Enter the complex value of z0 = x0 + iy0 into the X-registers by pressing  

x0vy0´V. 

5. Press ´A to display the successive values of xk and yk for k = 1, ... , n and finally 

the descriptor of matrix A. The values for k = 0, ... , n are stored in matrix A. 

6. If desired, recall values from matrix A. 

Example: Calculate the streamline of the potential P(z) = 1/z + z passing through                   

z = −2 + 0.1i . 

First, enter subroutine "B" to compute Im(P(z)). 

Keystrokes Display  

´bB  062-42,21,12  

v  063-      36 Duplicates z. 

⁄  064-      15  

+  065-      40 Calculates 1/z + z. 

´}  066-   42 30 Places Im(P(z)) in X-register. 
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Keystrokes Display  

|n  067-   43 32  

Determine the streamline using z0 = −2 + 0.1 i, step size h = 0.5, and number of points n = 9. 

Keystrokes Display  

|¥  Run mode. 

9v  9.0000 Enters n. 

.5v  0.5000 Enters h. 

2”v -2.0000  

.1´V -2.0000 Enters z0. 

´A -1.5000 x1. 

  0.1343 y1. 

 ⋮ ⋮ 

  2.0000 x9. 

  0.1000 y9. 

  A      9   2 Descriptor for matrix A. 

|"8  A      9   2 Deactivates Complex mode. 

Matrix A contains the following values of xk and yk: 

xk yk 

−2.0 0.1000 

−1.5 0.1343 

−1.0 0.4484 

−0.5 0.9161 

0.0 1.0382 

0.5 0.9161 

1.0 0.4484 

1.5 0.1343 

2.0 0.1000 

The streamline and velocity equipotential lines are illustrated below. The derived streamline 

corresponds to the heavier solid line. 
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Example: For the same potential as the previous example, P(z) = 1/z + z, compute the 

velocity equipotential line starting at z = 2 + i and proceeding to the left. 

First change subroutine "B" so that it returns Re(P(z))—that is, remove the } 
instruction from "B". Try n = 6 and h = −0.5. (Notice that h is negative, which specifies that 

xk will be to the left of x0) 

Although the keystrokes are not listed here, the results that would be calculated and stored in 

matrix A are shown below. 

The results show the nature of the top branch of the curve (the heavier dashed line in the 

graph for the previous example). Note that the step size h is automatically decreased in order 

to follow the curve-rather than stop with an error-when no y-value is found for x < 1.86. 

 

xk yk 

2.0000 1.0000 

1.8750 0.2363 

1.8672 0.1342 

1.8452 0.0941 

1.8647 0.0844 

1.8646 0.0775 
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Section 4: 
Using Matrix Operations 

Matrix algebra is a powerful tool. It allows you to more easily formulate and solve many 

complicated problems, simplifying otherwise intricate computations. In this section you will 

find information about how the HP-15C performs certain matrix operations and about using 

matrix operations in your applications. 

Several results from numerical linear algebra theory are summarized in this section. This 

material is not meant to be self-contained. You may want to consult a reference for more 

complete presentations.
**

 

Understanding the LU Decomposition 

The HP-15C can solve systems of linear equations, invert matrices, and calculate 

determinants. In performing these calculations, the HP-15C transforms a square matrix into a 

computationally convenient form called the LU decomposition of the matrix. 

The LU decomposition procedure factors a square matrix A into the matrix product LU. L is 

a lower-triangular matrix with 1's on its diagonal and with subdiagonal elements (those 

below the diagonal) between -1 and +1, inclusive. U is an upper-triangular matrix.
††

 For 

example: 

LUA 




























5.0

32

15.

01

11

32
. 

Some matrices can't be factored into the LU form. For example, 

LUA 









21

10
 

for any pair of lower- and upper-triangular matrices L and U. However, if rows are 

interchanged in the matrix to be factored, an LU decomposition can always be constructed. 

Row interchanges in the matrix A can be represented by the matrix product PA for some 

square matrix P. Allowing for row interchanges, the LU decomposition can be represented by 

the equation PA = LU. So for the above example, 

LUPA 











































10

21

10

01

10

21

21

10

01

10
. 

                                                           

** Two such references are 

Atkinson, Kendall E., An Introduction to Numerical Analysis, Wiley, 1978. 

Kahan, W. "Numerical Linear Algebra," Canadian Mathematical Bulletin, Volume 9, 1966, pp. 756-801. 

†† A lower-triangular matrix has 0’s for all elements above its diagonal. An uppertriangular matrix has 0's for all elements 

below its diagonal. 
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Row interchanges can also reduce rounding errors that can occur during the calculation of the 

decomposition. 

The HP-15C uses the Doolittle method with extended-precision arithmetic to construct the 

LU decomposition. It generates the decomposition entirely within the result matrix. The LU 

decomposition is stored in the form 










L

U
 

It is not necessary to save the diagonal elements of L since they are always equal to 1. The 

row interchanges are also recorded in the same matrix in a coded form not visible to you. The 

decomposition is flagged in the process, and its descriptor includes two dashes when 

displayed. 

When you calculate a determinant or solve a system of equations, the LU decomposition is 

automatically saved. It may be useful to use the decomposed form of a matrix as input to a 

subsequent calculation. If so, it is essential that you not destroy the information about row 

interchanges stored in the matrix; don't modify the matrix in which the decomposition is 

stored. 

To calculate the determinant of a matrix, A for example, the HP-15C uses the equation         

A = P
−1

LU, which allows for row interchanges. The determinant is then just (−1)
r
 times the 

product of the diagonal elements of U, where r is the number of row interchanges. The HP-

15C calculates this product with the correct sign after decomposing the matrix. If the matrix 

is already decomposed, the calculator just computes the signed product. 

It's easier to invert an upper- or lower-triangular matrix than a general square matrix. The 

HP-15C calculates the inverse of a matrix, A for example, using the relationship 

A
−1

 = (P
−1

LU) 
−1

 = U
−1

L
−1

P. 

It does this by first decomposing matrix A, inverting both L and U, calculating their product 

U
−1

L
−l

, and then interchanging the columns of the result. This is all done within the result 

matrix—which could be A itself. If A is already in decomposed form, the decomposition step 

is skipped. Using this method, the HP-15C can invert a matrix without using additional 

storage registers. 

Solving a system of equations, such as solving AX = B for X, is easier with an upper- or 

lower-triangular system matrix A than with a general square matrix A. Using PA = LU, the 

equivalent problem is solving LUX = PB for X. The rows of B are interchanged in the same 

way that the rows of the matrix A were during decomposition. The HP-15C solves LY = PB 

for Y (forward substitution) and then UX = Y for X (backward substitution). The LU form is 

preserved so that you can find the solutions for several matrices B without reentering the 

system matrix. 

The LU decomposition is an important intermediate step for calculating determinants, 

inverting matrices, and solving linear systems. The LU decomposition can be used in lieu of 

the original matrix as input to these calculations. 
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ILL-Conditioned Matrices and the Condition Number 

In order to discuss errors in matrix calculations, it's useful to define a measure of distance 

between two matrices. One measure of the distance between matrices A and B is the norm of 

their difference, denoted ||A − B||. The norm can also be used to define the condition number 

of a matrix, which indicates how the relative error of a calculation compares to the relative 

error of the matrix itself. 

The HP-15C provides three norms. The Frobenius norm of a matrix A, denoted ||A||F, is the 

square root of the sum of the squares of the matrix elements. This is the matrix analog of the 

Euclidean length of a vector. 

Another norm provided by the HP-15C is the row norm. The row norm of an m  n matrix A 

is the largest row sum of absolute values and is denoted ||A||R: 





n

j

ijR
a

mi 11

max
A  

The column norm of the matrix is denoted ||A||C and can be computed by ||A||C = ||A
T
||R. The 

column norm is the largest column sum of absolute values. 

For example, consider the matrices 




















654

222
and

954

321
BA  

Then 











300

101
BA  

and 

||A + B||F  = 3.311    (Frobenius norm), 

||A − B||R  = 3 (row norm), and 

||A − B||C  = 4 (column norm). 

The remainder of this discussion assumes that the row norm is used. Similar results are 

obtained if any of the other norms is used instead. 

The condition number of a square matrix A is defined as 

K(A) = ||A|| ||A
−1

||. 

Then 1 ≤ K(A) < ∞  using any norm. The condition number is useful for measuring errors in 

calculations. A matrix is said to be ill-conditioned if K(A) is very large. 

If rounding or other errors are present in matrix elements, these errors will propagate through 

subsequent matrix calculations. They can be magnified significantly. For example, suppose 
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that X and B are nonzero vectors satisfying AX = B for some square matrix A. Suppose A is 

perturbed by ΔA and we compute B + ΔB = (A + ΔA)X. Then 

 
 

)(A
AΔA

BΔB
K , 

with equality for some perturbation ΔA. This measures how much the relative uncertainty in 

A can be magnified when propagated into the product. 

The condition number also measures how much larger in norm the relative uncertainty of the 

solution to a system can be compared to that of the stored data. Suppose again that X and B 

are nonzero vectors satisfying AX = B for some matrix A. Suppose now that matrix B is 

perturbed (by rounding errors, for example) by an amount ΔB. Let X + ΔX satisfy             

A(X + ΔX) = B +ΔB. Then 

 
 

)(A
BΔB

XΔX
K  

with equality for some perturbation ΔB. 

Suppose instead that matrix A is perturbed by ΔA. Let X + ΔX satisfy (A + ΔA)(X + ΔX) = 

B. If d(A, ΔA) = K(A)||ΔA|| /||A|| < 1, then 

 
  )(1

)(

ΔAA,

A

AΔA

XΔX

d

K


 . 

Similarly, if A
−1

 + Z is the inverse of the perturbed matrix A + ΔA, then 

 
  )(1

)(

ΔAA,

A

AΔA

AZ 1

d

K






. 

Moreover, certain perturbations ΔA cause the inequalities to become equalities. 

All of the preceding relationships show how the relative error of the result is related to the 

relative error of matrix A via the condition number K(A). For each inequality, there are 

matrices for which equality is true. A large condition number makes possible a relatively 

large error in the result. 

Errors in the data—sometimes very small relative errors—can cause the solution of an ill-

conditioned system to be quite different from the solution of the original system. In the same 

way, the inverse of a perturbed ill-conditioned matrix can be quite different from the inverse 

of the unperturbed matrix. But both differences are bounded by the condition number; they 

can be relatively large only if the condition number K(A) is large. 

Also, a large condition number K(A) of a nonsingular matrix A indicates that the matrix A is 

relatively close, in norm, to a singular matrix. That is 
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 ASAA  min)(1 K  

and 

 SAA
1  min1 , 

where the minimum is taken over all singular matrices S. That is, if K(A) is large, then the 

relative difference between A and the closest singular matrix S is small. If the norm of A
−1

 is 

large, the difference between A and the closest singular matrix S is small. 

For example, let 











9999999999.1

11
A  

Then 















1010

10

1010

10999,999,999,91
A  

and ||A
−1

|| = 2 × 10
10

. Therefore, there should exist a perturbation ΔA with ||ΔA|| = 5 ×10
−11

 

that makes A + ΔA singular. Indeed, if 



















11

11

1050

1050
ΔA  

with ||ΔA|| = 5 ×10
−11

, then 











59999999999.1

59999999999.1
ΔAA  

and A + ΔA is singular. 

The figures below illustrate these ideas. In each figure matrix A and matrix S are shown 

relative to the "surface" of singular matrices and within the space of all matrices. Distance is 

measured using the norm. Around every matrix A is a region of matrices that are practically 

indistinguishable from A (for example, those within rounding errors of A). The radius of this 

region is ||ΔA||. The distance from a nonsingular matrix A to the nearest singular matrix S is 

1/||A
−1

||. 
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In the left diagram, ||ΔA|| < 1/||A
−1

||. If ||ΔA|| << 1 / ||ΔA
−1

||  (or K(A) ||ΔA||/||A|| << 1), then 

relative variation in A
−1 

= ||change in A
−1

||/||A
−1

|| 

      ≈ (||ΔA||/||A||) K(A) 

        = ||ΔA||/(1/||A
−1

||)  

        = (radius of sphere)/(distance to surface) 

In the right diagram, ||ΔA||>1/||A
−1

||. In this case, there exists a singular matrix that is 

indistinguishable from A, and it may not even be reasonable to try to compute the inverse of 

A.  

The Accuracy of Numerical Solutions to Linear Systems 

The preceding discussion dealt with how uncertainties in the data are reflected in the 

solutions of systems of linear equations and in matrix inverses. But even when data is exact, 

uncertainties are introduced in numerically calculated solutions and inverses. 

Consider solving the linear system AX = B for the theoretical solution X. Because of 

rounding errors during the calculations, the calculated solution Z is in general not the 

solution to the original system AX = B, but rather the solution to the perturbed system        

(A + ΔA)Z = B. The perturbation ΔA satisfies ||ΔA|| < ε||A||, where ε is usually a very small 

number. In many cases, ΔA will amount to less than one in the 10th digit of each element of 

A. 

For a calculated solution Z, the residual is R =  − AZ. Then ||R||≤ ε||A||||Z||. So the expected 

residual for a calculated solution is small. But although the residual R is usually small, the 

error Z − X may not be small if A is ill-conditioned: 

||Z − X|| ≤ ε||A|| ||A
−1

|| ||Z|| = ε K(A) ||Z||. 

A useful rule-of-thumb for the accuracy of the computed solution is 
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  )10log(log
carrieddigits

ofnumber

digits decimal

correctofnumber
n
















 1
AA  

where n is the dimension of A. For the HP-15C, which carries 10 accurate digits, 

(number of correct decimal digits) ≥ 9 − log(||A|| ||A
−1

||) − log(10n). 

In many applications, this accuracy may be adequate. When additional accuracy is desired, 

the computed solution Z can usually be improved by iterative refinement (also known as 

residual correction). 

Iterative refinement involves calculating a solution to a system of equations, then improving 

its accuracy using the residual associated with the solution to modify that solution. 

To use iterative refinement, first calculate a solution Z to the original system AX = B. Z is 

then treated as an approximation to X, in error by E = X − Z. Then E satisfies the linear 

system AE = AX − AZ = R, where R is the residual for Z. The next step is to calculate the 

residual and then to solve AE = R for E. The calculated solution, denoted by F, is treated as 

an approximation to E = X − Z and is added to Z to obtain a new approximation to X:          

F + Z ≈ (X − Z) + Z = X. 

In order for F + Z to be a better approximation to X than is Z, the residual R = B − AZ must 

be calculated to extended precision. The HP-15C's >6 operation does this. The system 

matrix A is used for finding both solutions, Z and F. The LU decomposition formed while 

calculating Z can be used for calculating F, thereby shortening the execution time. The 

refinement process can be repeated, but most of the improvement occurs in the first 

refinement. 

(Refer to Applications at the end of this section for a program that performs one iteration of 

refinement.) 

Making Difficult Equations Easier 

A system of equations EX = B is difficult to numerically solve accurately if E is ill-

conditioned (nearly singular). Even iterative refinement can fail to improve the calculated 

solution when E is sufficiently ill-conditioned. However, instances arise in practice when a 

modest extra effort suffices to change difficult equations into others with the same solution, 

but which are easier to solve. Scaling and preconditioning are two processes to do this. 

Scaling 

Bad scaling is a common cause of poor results from attempts to numerically invert ill-

conditioned matrices or to solve systems of equations with ill-conditioned system matrices. 

But it is a cause that you can easily diagnose and cure. 

Suppose a matrix E is obtained from a matrix A by E = LAR, where L and R are scaling 

diagonal matrices whose diagonal elements are all integer powers of 10. Then E is said to be 

obtained from A by scaling. L scales the rows of A, and R scales the columns. Presumably 

E
−1

 = R
−1

A
−1

L
−1

 can be obtained either from A
−1

 by scaling or from E by inverting. 
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For example, let matrix A be 

























112

111

21103 40

A . 

The HP-15C correctly calculates A
−1

 to 10-digit accuracy as 

























121

243

132
1

A . 

Now let 






















20

20

20

1000

0100

0010

RL  

so that 
























4040

4040

10102

10101

213

E . 

E is very near a singular matrix 



















002

001

213

S  

and ||E – S|| / ||E|| = ⅓ × 10
–40

. This means that K(S) ≥ 3 × 10
40

, so it's not surprising that the 

calculated E
–1 





























99

99

1011

10142.210284.407155.0

10284.410569.88569.0

1011067.6
1

E  

is far from the true value 





























4040

4040

40

101021

1021043

13102
1

E  
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Multiplying the calculated inverse and the original matrix verifies that the calculated inverse 

is poor. 

The trouble is that E is badly scaled. A well-scaled matrix, like A, has all its rows and 

columns comparable in norm and the same must hold true for its inverse. The rows and 

columns of E are about as comparable in norm as those of A, but the first row and column of 

E
−1

 are small in norm compared with the others. Therefore, to achieve better numerical 

results, the rows and columns of E should be scaled before the matrix is inverted. This means 

that the diagonal matrices L and R discussed earlier should be chosen to make LER and 

(LER)
 −1

 = R
−1

E
−1

L
−1

 not so badly scaled. 

In general, you can't know the true inverse of matrix E in advance. So the detection of bad 

scaling in E and the choice of scaling matrices L and R must be based on E and the 

calculated E
−1

. The calculated E
−1

 shows poor scaling and might suggest trying 





















5

5

5

1000

0100

0010

RL . 

Using these scaling matrices, 















 








3030

3030

10

10102

10101

21103

LER , 

which is still poorly scaled, but not so poorly that the HP-15C can’t cope. The calculated 

inverse is 





























3030

3030

30

1

101021

1021043

13102

)(LER . 

This result is correct to 10 digits, although you wouldn't be expected to know this. This result 

is verifiably correct in the sense that using the calculated inverse, 

(LER)
−1

 (LER) = (LER)(LER)
 −1

 = I (the identity matrix) 

to 10 digits. 

Then E
−1

 is calculated as 






























4040

4040

40

11

101021

1021043

13102

)( LLERRE , 

which is correct to 10 digits. 
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If (LER)
 −1

 is verifiably poor, you can repeat the scaling, using LER in place of E and using 

new scaling matrices suggested by LER and the calculated (LER)
−1

. 

You can also apply scaling to solving a system of equations, for example EX = B, where E is 

poorly scaled. When solving for X, replace the system EX = B by a system (LER)Y = LB to 

be solved for Y. The diagonal scaling matrices L and R are chosen as before to make the 

matrix LER well-scaled. After you calculate Y from the new system, calculate the desired 

solution as X = RY. 

Preconditioning 

Preconditioning is another method by which you can replace a difficult system, EX = B, by 

an easier one, AX = D, with the same solution X. 

Suppose that E is ill-conditioned (nearly singular). You can detect this by calculating the 

inverse E
−1

 and observing that 1/||E
−1

|| is very small compared to ||E|| (or equivalently by a 

large condition number K(E)). Then almost every row vector u
T
 will have the property that 

||u
T
||/||u

T
 E

−1
|| is also very small compared with ||E||, where E

−1
 is the calculated inverse. This 

is because most row vectors u
T
 will have ||u

T
 E

−1
|| not much smaller than ||u

T
|| ||E

−1
||, and 

||E
−1

|| will be large. Choose such a row vector u
T
 and calculate v

T
 = au

T
E

−1
. Choose the scalar 

a so that the row vector r
T
, obtained by rounding every element of v

T
 to an integer between 

−100 and 100, does not differ much from v
T
. Then r

T
 is a row vector with integer elements 

with magnitudes less than 100. ||r
T
E|| will be small compared with ||r

T
|| ||E||—the smaller the 

better. 

Next, choose the kth element of r
T
 having one of the largest magnitudes. Replace the kth row 

of E by r
T
E and the kth row of B by r

T
B. Provided that no roundoff has occurred during the 

evaluation of these new rows, the new system matrix A should be better conditioned (farther 

from singular) than E was, but the system will still have the same solution X as before. 

This process works best when E and A are both scaled so that every row of E and of A have 

roughly the same norm as every other. You can do this by multiplying the rows of the 

systems of equations EX = B and AX = D by suitable powers of 10. If A is not far enough 

from singular, though well scaled, repeat the preconditioning process. 

As an illustration of the preconditioning process, consider the system EX = B, where 

















































0

0

0

0

1

, BE

xyyyy

yxyyy

yyxyy

yyyxy

yyyyx

 

and x = 8000.00002 and y = −1999.99998. If you attempt to solve this system directly, the 

HP-15C calculates the solution X and the inverse E
−1

 to be 
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















































11111

11111

11111

11111

11111

6.2014and

6.2014

6.2014

6.2014

6.2014

6.2014

1-
EX . 

Substituting, you find 

























00147.0

00146.0

00146.0

00146.0

00146.1

EX . 

Upon checking (using >7), you find that 1/||E
−1

|| ≈ 9.9 × 10
−5 

which is very small 

compared with ||E|| ≈ 1.6 × 10
4 

(or that the calculated condition number is large—               

||E|| ||E
−1

|| ≈ 1.6 × 10
8
). 

Choose any row vector u
T
 = (1, 1, 1, 1, 1) and calculate 

u
T
 E

−1
 ≈ 10,073 (1,1,1,1,1). 

Using a = 10
−4

 

v
T
 = a u

T
 E

−1
 ≈ 1.0073 (1,1,1,1,1) 

r
T
 = (1,1,1,1,1) 

|| r
T
 E|| ≈ 5 × 10

-4
 

|| r
T
 || ||E|| ≈ 8 × 10

4
 

As expected, ||r
T
 E|| is small compared to || r

T
 || ||E||. 

Now replace the first row of E by 

10
7
 r

T 
E = (1000, 1000, 1000, 1000, 1000) 

and the first row of B by 10
7
r

T
B = 10

7
. This gives a new system equation AX=D, where 

















































0

0

0

0

10

and

10001000100010001000 7

DA

xyyyy

yxyyy

yyxyy

yyyxy

. 
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Note that r
T
E was scaled by 10

7
 so that each row of E and A has roughly the same norm as 

every other. Using this new system, the HP-15C calculates the solution 























































0

0

109

10

10

with,

999980.1999

999980.1999

999980.1999

999980.1999

000080.2000

6

5

7

AXX . 

This solution differs from the earlier solution and is correct to 10 digits. 

Sometimes the elements of a nearly singular matrix E are calculated using a formula to 

which roundoff contributes so much error that the calculated inverse E
−1

 must be wrong even 

when it is calculated using exact arithmetic. Preconditioning is valuable in this case only if it 

is applied to the formula in such a way that the modified row of A is calculated accurately. In 

other words, you must change the formula exactly into a new and better formula by the 

preconditioning process if you are to gain any benefit. 

Least-Squares Calculations 

Matrix operations are frequently used in least-squares calculations. The typical least-squares 

problem involves an n × p matrix X of observed data and a vector y of n observations from 

which you must find a vector b with p coefficients that minimizes 





n

i

iF
r

1

22
r  

Where r = y – Xb is the residual vector. 

Normal Equations 

From the expression above, 

XbXbyXbyyXbyXbyr
TTTTTT

F
 2)()(

2
. 

Solving the least-squares problem is equivalent to finding a solution b to the normal 

equations. 

X
T
Xb = X

T
y. 

However, the normal equations are very sensitive to rounding errors. (Orthogonal 

factorization, discussed on page 95, is relatively insensitive to rounding errors.) 

The weighted least-squares problem is a generalization of the ordinary least-squares 

problem. In it you seek to minimize 
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



n

i

iiF
rw

1

222
Wr  

where W is a diagonal n × n matrix with positive diagonal elements w1, w2, ... , wn. 

Then 

)()(
2

XByWWXbyWr  TT

F
 

and any solution b also satisfies the weighted normal equations 

X
T
W

T
WXb = X

T
W

T
Wy. 

These are the normal equations with X and y replaced by WX and Wy. Consequentially, 

these equations are sensitive to rounding errors also. 

The linearly constrained least-squares problem involves finding b such it minimizes 

22
b

FF
Xyr   

subject to the constraints 














 



k

j

ijij midbc
1

,,2,1for dCb . 

This is equivalent to finding a solution b to the augmented normal equations 



























d

yXb

C

CXX
TTT

10
 

where l, a vector of Lagrange multipliers, is part of the solution but isn't used further. Again, 

the augmented equations are very sensitive to rounding errors. Note also that weights can 

also be included by replacing X and y with WX and Wy. 

As an example of how the normal equations can be numerically unsatisfactory for solving 

least-squares problems, consider the system defined by 

.

1.0

1.0

1.0

1.0

and

2.00.0

0.02.0

1.01.0

.000,100.000,100





































 

 yX  

Then 















05.000,000,000,1099.999,999,999,9

99.999,999,999,905.000,000,000,10
XX

T  
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and 

.
97.999,9

03.000,10










yX

T  

However, when rounded to 10 digits, 

,
1010

1010
1010

1010













XX

T  

which is the same as what would be calculated if X were rounded to five significant digits to 

the largest element: 

.

00

00

00

000,100000,100

















 

X  

The HP-15C solves X
T
Xb = X

T
y (perturbing the singular matrix as described on page 99) and 

gets 











060000.0

060001.0
b  

With 

.
03.0

03.0








 XbXyX

TT  

However, the correct least-squares solution is 











4999995.0

5000005.0
b  

despite the fact that the calculated solution and the exact solution satisfy the computed 

normal equations equally well. 

The normal equations should be used only when the elements of X are all small integers (say 

between -3000 and 3000) or when you know that no perturbations in the columns xj of X of 

as much as ||xj||/10
4
 could make those columns linearly dependent. 

Orthogonal Factorization 

The following orthogonal factorization method solves the least squares problem and is less 

sensitive to rounding errors than the normal equation method. You might use this method 

when the normal equations aren't appropriate. 
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Any n × p matrix X can be factored as X = Q
T
U, where Q is an n × n orthogonal matrix 

characterized by Q
T
 = Q

−l
 and U is an n × p upper-triangular matrix. The essential property 

of orthogonal matrices is that they preserve length in the sense that 

.

)r()(

2

2

F

T

TT

T

F

r

rr

QrQr

QQrrQ









 

Therefore, if r = y – Xb, it has the same length as 

Qr = Qy – QXb = Qy – Ub. 

The upper-triangular matrix U and the product Qy can be written as 

.
rows)(

rows)(
and

rows)(

rows)(ˆ

pn

p

pn

p























f

g
Qy

O

U
U  

Then 

2

22

2

22

ˆ

r

F

FF

F

FF

f

fbUg

UbQy

Qr









 

with equality when 0bUg  ˆ . In other words, the solution to the ordinary least-squares 

problem is any solution to gbU ˆ  and the minimal sum of squares is 
2

F
f . This is the basis 

of all numerically sound least-squares programs. 

You can solve the unconstrained least-squares problem in two steps: 

1. Perform the orthogonal factorization of the augmented n × (p + 1) matrix 

  VQyX
T  

where Q
T
 = Q

−1
, and retain only the upper-triangular factor V, which you can then 

partition as 

rows)1(

row)(1

rows)(ˆ



















pn

p

q

00

0

gU

V  

 (1 column) 

(p columns) 
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Only the first p + 1 rows (and columns) of V need to be retained. (Note that Q here is 

not the same as that mentioned earlier, since this Q must also transform y.) 

2. Solve the following system for b: 

.
1

ˆ































qq

0b

0

gU
 

(If q = 0, replace it by any small nonzero number, say 10
−99

.) The −1 in the solution 

matrix automatically appears; it requires no additional calculations. 

In the absence of rounding errors, q = ±||y – Xb||F; this may be inaccurate if |q| is too 

small, say smaller than ||y||/l0
6
. If you desire a more accurate estimate of ||y – Xb||F, 

you can calculate it directly from X, y, and the computed solution b. 

For the weighted least-squares problem, replace X and y by WX and Wy, where W is the 

diagonal matrix containing the weights. 

For the linearly constrained least-squares problem, you must recognize that constraints may 

be inconsistent. In addition, they can't always be satisfied exactly by a calculated solution 

because of rounding errors. Therefore, you must specify a tolerance t such that the constraints 

are said to be satisfied when ||Cb – d|| < t. Certainly t > ||d||/10
10

 for 10-digit computation, 

and in some cases a much larger tolerance must be used. 

Having chosen t, select a weight factor w that satisfies w > ||y||/t. For convenience, choose w 

to be a power of 10 somewhat bigger than ||y||/t. Then w||Cb – d|| > ||y|| unless ||Cb – d|| < t. 

However, the constraint may fail to be satisfied for one of two reasons: 

 No b exists for which ||Cb – d|| < t. 

 The leading columns of C are nearly linearly dependent. 

Check for the first situation by determining whether a solution exists for the constraints 

alone. When [wC     wd] has been factored to Q[U     g], solve this system for b 

)row1(

)rows(

1)diag()rows1(

)rows( p

qqkp

k
































0b

0

gU
 

using any small nonzero number q. If the computed solution b satisfies Cb ≈ d, then the 

constraints are not inconsistent. 

The second situation is rarely encountered and can be avoided. It shows itself by causing at 

least one of the diagonal elements of U to be much smaller than the largest element above it 

in the same column, where U is from the orthogonal factorization wC = QU. 

To avoid this situation, reorder the columns of wC and X and similarly reorder the elements 

(rows) of b. The reordering can be chosen easily if the troublesome diagonal element of U is 

also much smaller than some subsequent element in its row. Just swap the corresponding 
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columns in the original data and refactor the weighted constraint equations. Repeat this 

procedure if necessary. 

For example, if the factorization of wC gives 























2.15.15.200

1.00.35.002.00

3.05.15.00.20.1

U , 

then the second diagonal element is much smaller than the value 2.0 above it. This indicates 

that the first and second columns in the original constraints are nearly dependent. The 

diagonal element is also much smaller than the subsequent value 3.0 in its row. Then the 

second and fourth columns should be swapped in the original data and the factorization 

repeated. 

It is always prudent to check for consistent constraints. The test for small diagonal elements 

of U can be done at the same time. 

Finally, using U and g as the first k rows, add rows corresponding to X and y. (Refer to 

Least-Squares Using Successive Rows on page 118 for additional information.) Then solve 

the unconstrained least-squares problem with 




















y

d
y

X

C
X

ww
and . 

Provided the calculated solution b satisfies ||Cb – d|| < t, that solution will also minimize ||y – 

Xb|| subject to the constraint Cb ≈ d. 

Singular and Nearly Singular Matrices 

A matrix is singular if and only if its determinant is zero. The determinant of a matrix is 

equal to (−1)
r
 times the product of the diagonal elements of U, where U is the upper-diagonal 

matrix of the matrix's LU decomposition and r is the number of row interchanges in the 

decomposition. Then, theoretically, a matrix is singular if at least one of the diagonal 

elements of U, the pivots, is zero; otherwise it is nonsingular. 

However, because the HP-15C performs calculations with only a finite number of digits, 

some singular and nearly singular matrices can't be distinguished in this way. For example, 

consider the matrix 

LUB 


























00

33

1

01

11

33

3
1

, 

which is singular. Using 10-digit accuracy, this matrix is decomposed as 
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

















10100

33

13333333333.

01
LU , 

which is nonsingular. The singular matrix B can't be distinguished from the nonsingular 

matrix 











19999999999.

33
D  

since they both have identical calculated LU decompositions. 

On the other hand, the matrix 

LUA 




























10
3

1 100

33

1

01

9999999999.1

33
 

is nonsingular. Using 10-digit accuracy, matrix A is decomposed as 



















00

33

13333333333.

01
LU . 

This would incorrectly indicate that matrix A is singular. The nonsingular matrix A can't be 

distinguished from the singular matrix 











9999999999.9999999999.

33
C  

since they both have identical calculated LU decompositions. 

When you use the HP-15C to calculate an inverse or to solve a system of equations, you 

should understand that some singular and nearly singular matrices have the same calculated 

LU decomposition. For this reason, the HP-15C always calculates a result by ensuring that all 

decomposed matrices never have zero pivots. It does this by perturbing the pivots, if 

necessary, by an amount that is usually smaller than the rounding error in the calculations. 

This enables you to invert matrices and solve systems of equations without being interrupted 

by zero pivots. This is very important in applications such as calculating eigenvectors using 

the method of inverse iteration (refer to page 130). 

The effect of rounding errors and possible intentional perturbations is to cause the calculated 

decomposition to have all nonzero pivots and to correspond to a nonsingular matrix A + ΔA 

usually identical to or negligibly different from the original matrix A. Specifically, unless 

every element in some column of A has absolute value less than 10
−89

, the column sum norm 

||ΔA||C will be negligible (to 10 significant digits) compared with ||A||C. 

The HP-15C calculates the determinant of a square matrix as the signed product of the 

(possibly perturbed) calculated pivots. The calculated determinant is the determinant of the 
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matrix A + ΔA represented by the LU decomposition. It can be zero only if the product's 

magnitude becomes smaller than 10
−99

 (underflow). 

Applications 

The following programs illustrate how you can use matrix operations to solve many types of 

advanced problems. 

Constructing an Identity Matrix 

This program creates an identity matrix In in the matrix whose descriptor is in the Index 

register. The program assumes that the matrix is already dimensioned to n × n. Execute the 

program using G8. The final matrix will have l's for all diagonal elements and 0's for all 

other elements. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´b8  001-42,21, 8  

´>1  002-42,16, 1 Sets i = j = 1. 

´b9  003-42,21, 9  

l0  004-   45  0  

l1  005-   45  1  

|T6  006-43,30, 6 Tests i ≠ j. 

|`  007-   43,35  

|T5  008-43,30, 5 Tests i = j. 

“  009-      26 Sets elements to 1 if i = j. 

´UO% 
´U 

 010u   44 24 Skips next step at last element. 

t9  011-   22  9  

|n  012-   43 32  

|¥  Run mode. 

Labels used: 8 and 9. 

Registers used: R0, R1, and Index register. 
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One-Step Residual Correction 

The following program solves the system of equations AX = B for X, then performs one 

stage iterative refinement to improve the solution. The program uses four matrices: 

 

Matrix A B C D 

Input System 
Matrix 

Right-Hand 
Matrix 

  

Output System 
Matrix 

Corrected 
Solution 

Uncorrected 
Solution 

LU Form 
of A 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA 001-42,21,11  

l>A 002-45,16,11  

O>Á 003-44,16,14 Stores system matrix in D. 

l>B 004-45,16,12  

l>Á 005-45,16,14  

´<C 006-42,26,13  

÷ 007-      10 Calculates uncorrected solution, C. 

´<B 008-42,26,12  

´>6 009-42,16, 6 Calculates residual, B. 

l>Á 010-45,16,14  

÷ 011-      10 Calculates correction, B. 

l>C 012-45,16,13  

+ 013-      40 Calculates refined solution, B. 

|n 014-   43 32  

|¥  Run mode. 

Label used: A. 

Matrices used: A, B, C, and D. 

To use this program: 

1. Dimension matrix A according to the system matrix and store those elements in A. 

2. Dimension matrix B according to the right-hand matrix and store those elements in B. 

3. Press GA to calculate the corrected solution in matrix B. 
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Example: Use the residual correction program to calculate the inverse of matrix A for 

.

1748

571024

721633



















A  

The theoretical inverse of A is 

.

93/23/8

2/512/58

323/83/29
1






















A  

Find the inverse by solving AX = B for X, where B is a 3 × 3 identity matrix. 

First, enter the program from above. Then, in Run mode, enter the elements into matrix A 

(the system matrix) and matrix B (the right-hand, identity matrix). Press GA to 

execute the program. 

Recall the elements of the uncorrected solution, matrix C: 

.

000000203.96666666836.0666666728.2

50000055.25500000046.2000000167.8

00000071.32666666726.2666666881.9















 

C  

This solution is correct to seven digits. The accuracy is well within that predicted by the 

equation on page 88. 

(number of correct digits) ≥ 9 – log(||A|| ||C||) – log (3) ≈ 4.8. 

Recall the elements of the corrected solution, matrix B: 

.

000000000.96666666667.0666666667.2

50000000.25500000000.2000000000.8

00000000.32666666667.2666666667.9















 

B  

One iteration of refinement yields 10 correct digits in this case. 

Solving a System of Nonlinear Equations 

Consider a system of p nonlinear equations in p unknowns: 

fi(x1, x2, …, xp) = 0    for i = 1, 2, …, p 

for which the solution x1, x2, … , xp is sought. 
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Let 



































































)()(

)()(

)()(

)(and,

)(

)(

)(

)(,

1

221

111

2

1

2

1

xx

xx

xx

xF

x

x

x

xfx

ppp

p

p

pp FF

FF

FF

f

f

f

x

x

x










, 

where 

)()( xx i

j

ij f
x

F



        for i, j = 1, 2, …, p. 

The system of equations can be expressed as f(x) = 0. Newton's method starts with an initial 

guess x
(0)

 to a root x of f(x) = 0 and calculates 

x
(k + 1)

 = x
(k)

 − (F(x
(k)

))
−1

f(x
(k)

)      for k = 0, 1, 2, … 

until x
(k+1)

 converges. 

The program in the following example performs one iteration of Newton's method. The 

computations are performed as 

x
(k + 1)

 = x
(k)

 − d
(k)

, 

where d
(k)

 is the solution to the p×p  linear system 

F(x
(k)

)d
(k)

 = f(x
(k)

) . 

The program displays the Euclidean lengths of f(x
(k)

) and the correction d
(k)

 at the end of each 

iteration. 

Example: For the random variable y having a normal distribution with unknown mean m and 

variance v
2
, construct an unbiased test of the hypothesis that 2

0
2 vv   versus the alternative that 

2
0

2 vv   for a particular value 2
0v . 

For a random sample of y consisting of y1, y2, … , yn an unbiased test rejects the hypothesis if 

2

02

2

01 vxsorvxs nn  , 

where 





n

i

i

n

i

in y
n

yandyys
11

2 1
)(  

for some constants x1 and x2. 

If the size of the test is a (0 < a < 1), you can find xl and x2 by solving the system of 

equations f1(x) = f2(x) = 0, where 

f1(x) = (n – 1) ln(x2 / x1) + x1 – x2 
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 
2

1

)1()1(2)2/exp()2/()(2

x

x

m madwwwf x . 

Here x2 > xl > 0, a and n are known (n > 1), and m = (n − 1)/2 − l. 

An initial guess for (xl, x2) is 

2

2/,1

)0(

1 anxx     and   
2

2/1,1

)0(

2 anxx   

Where 
2

, pdx  is the pth percentile of the chi-square distribution with d degrees of freedom. 

For this example, 

 

       












2exp22exp2

1)1(11
)(

2212

21

xxxx

xnxn
mmxF . 

Enter the following program: 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11  

2  002-       2  

v  003-      36  

´mC  004-42,23,13 Dimensions F matrix to 2 × 2. 

1  005-       1  

´mB  006-42,23,12 Dimensions f matrix to 2 × 1. 

GB  007-   32 12 Calculates f and F. 

l>A  008-45,16,11  

l>B  009-45,16,12  

l>C  010-45,16,13  

´<Á  011-42,26,14  

÷  012-      10 Calculates d
(k)

. 

´<A  013-42,26,11  

-  014-      30 Calculates x
(k + 1)

 = x
(k)

 – d
(k)

. 

|K  015-   43 36  

´>8  016-42,16, 8 Calculates ||d
(k)

||F. 

l>B  017-45,16,12  

´>8  018-42,16, 8 Calculates ||f(x
(k)

)||F. 

|n  019-   43 32  

´bB  020-42,21,12 Routine to calculate f and F. 

´>1  021-42,16, 1  

´UlA  022u   45 11  
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Keystrokes Display  

´UO4  023-   44  4 Stores )(
1

k
x in R4. 

´UlA 
´U 

 024u   45 11 Skips next line for last element. 

O5  025-   44  5 Stores )(
2
k

x in R5. 

O5  026-   44  5  

-  027-      30 Calculates x1 – x2. 

l5  028-   45  5  

l÷4  029-45,10, 4  

|N  030-   43 12 Calculates ln(x2 / x1). 

l2  031-   45  2  

1  032-       1  

-  033-      30  

*  034-      20 Calculates (n – 1) ln(x2 /  x1). 

+  035-      40 Calculates f1. 

OB  036-   44 12 Stores f1 in B. 

1  037-       1  

l2  038-   45  2  

1  039-       1  

-  040-      30  

l÷4  041-45,10, 4 Calculates (n – 1) / x1. 

-  042-      30 Calculates F11. 

´UOC 
´U 

 043u   44 13 Stores F11 in C. 

l2  044-   45  2  

1  045-       1  

-  046-      30  

l÷5  047-45,10, 5 Calculates (n – 1) / x2. 

1  048-       1  

-  049-      30 Calculates F12. 

´UOC 
´U 

 050u   44 13 Stores F12 in C. 

l4  051-   45  4  

l5  052-   45  5  

´fC  053-42,20,13 Calculates integral. 

l3  054-   45  3  

1  055-       1  

-  056-      30  

2  057-       2  

*  058-      20 Calculates 2(a – 1). 
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Keystrokes Display  

l2  059    45  2  

3  060-       3  

-  061-      30  

2  062-       2  

÷  063-      10 Calculates m. 

´!  064-   42  0 Calculates Γ(m + 1). 

*  065-      20  

+  066-      40 Calculates f2. 

OB  067-   44 12 Stores f2 in B. 

l4  068-   45  4  

GC  069    32 13  

”  070-      16 Calculates F21. 

´UOC 
´U 

 071u   44 13 Stores F21 in C. 

l5  072-   45  5  

GC  073    32 13 Calculates F22. 

´UOC 
´U 

 074u   44 13 Stores F22 in C. 

|n  075-   43 32 Skips this line. 

|n  076-   43 32  

´bC  077-42,21,13 Integrand routine. 

2  078-       2  

÷  079-      10  

”  080-      16  

'  081-      12 Calculates e
−x / 2

. 

|K  082-   43 36  

”  083-      16  

l2  084-   45  2  

3  085-       3  

-  086-      30  

2  087-       2  

÷  088-      10 Calculates m. 

Y  089-      14  

*  090-      20 Calculates (x/2)
m
e

-x/2
. 

|n  091    43 32  

Labels used: A, B, and C. 

Registers used: R0 (row), R1 (column), R2 (n), R3 (a), R4 (x1
(k)

), and R5 (x2
(k)

). 

Matrices used: A (x
(k + 1)

), B (f(x
(k)

)), C (F(x
(k)

)), and D (d
(k)

). 
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Now run the program. For example, choose the values n = 11 and a = 0.05. The suggested 

initial guesses are x1
(0)

 = 3.25 and x2
(0)

 = 20.5. Remember that the display format affects the 

uncertainty of the integral calculation. 

Keystrokes Display  

|¥  Run mode. 

5´m%  5.0000 Reserves R0 through R5. 

11O2  11.0000 Stores n in R2. 

.05O3  0.0500 Stores a in R3. 

2v1  1  

´mA  1.0000 Dimensions A to 2 × 1. 

´U  1.0000 Activates User mode. 

´>1  1.0000  

3.25OA  3.2500 Stores )0(
1

x from chi-square 

distribution. 

20.5OA  20.5000 Stores )0(
2

x from chi-square 

distribution. 

´i4  2.0500    01 Sets display format. 

A  1.1677    00 Displays norm of f(x
(0)

). 

)  1.0980    00 Displays norm of correction d
(0)

. 

lA  3.5519    00 Recalls 
)1(

1x . 

lA  2.1556    01 Recalls )1(
2

x . 

By repeating the last four steps, you will obtain these results: 

k  ||f(x)
(k)

)||F ||d
(k)

)||F )1(

1

kx  )1(

2

kx  

   3.2500 20.500 

0 1.168 1.098 3.5519 21.556 

1 1.105×10−1 1.740×10−1 3.5169 21.726 

2 1.918×10−3 2.853×10−3 3.5162 21.729 

3 6.021×10−7 9.542×10−7 3.5162 21.729 

This accuracy is sufficient for constructing the statistical test. (Press ´•4 to reset the 

display format and ´U to deactivate User mode.) 
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Solving a Large System of Complex Equations 

Example: Find the output voltage at a radian frequency of ω = 15 × 10
3
 rad/s for the filter 

network shown below. 

 

Describe the circuit using loop currents: 









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








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
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


























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
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




















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






















































0

0

0

)(00

)()(0

0)(

00

4

3

2

1

3

3

2
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2

1

2

1
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1

V
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I

I

I

C
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LiRLi
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C

i
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R
C
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LiR

C

i

C

i

C

i
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













 

Solve this complex system for I1, I2, I3, and I4. Then V0 = (R3)(I4). 

Because this system is too large to solve using the standard method for a system of complex 

equations, this alternate method (described in the owner's handbook) is used. First, enter the 

system matrix into matrix A in complex form and calculate its inverse. Note that ωL = 150, 

1/ωC1 = 800/3, and 1/ωC2 = 8/3. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000- Clears program memory. 

|¥  Run mode. 

0´m%  0.0000 Provides maximum matrix 

memory. 

´>0  0.0000 Dimensions all matrices to  

0 × 0. 

4v8 8  
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Keystrokes Display  

´mA  8.0000 Dimensions matrix A to  

4 × 8. 

´>1  8.0000  

´U  8.0000 Activates User mode. 

100OA  100.0000 Stores Re(a11). 

150v  150.0000  

800v3÷  266.6667  

-OA -116.6667 Stores Im(a11). 

⋮   

150v  150.0000  

8v3÷  2.6667  

-OA  147.3333 Stores Im(a44). 

l>A  A     4    8  

´p  A     8    4 Transforms A
C
 to A

P
. 

´>2  A     8    8 Transforms A
P
 to .

~
A  

O<  A     8    8  

´⁄  A     8    8 Calculates inverse of A
~

 in A. 

 

Delete the second half of the rows of A to provide space to store the right-hand matrix B. 

Keystrokes Display  

4v8  8  

´mA  8.0000 Redimensions matrix A to  

4 × 8. 

4v2  2  

´mB  2.0000 Dimensions matrix B to  

4 × 2. 

´>1  2.0000  

10OB  10.0000 Stores Re(V). (Other elements 

are 0.) 

l>A  A     4    8  

l>B  b     4    2  

´p  b     8    1 Transforms B
C
 to B

P
. 

´>2  b     8    2 Transforms B
P
 to B

~
. 

´<C  b     8    2  

*  C     4    2 Calculates solution in C. 

´>4  C     2    4 Calculates transpose. 

´>2  C     2    8 Transforms C to C
~

. 
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Keystrokes Display  

1v8  8  

´mC  8.0000 Redimensions matrix C to  

1 × 8. 

l<  C     1    8  

´>4  C     8    1 Calculates transpose. 

|c  C     4    2 Transforms C
P
 to C

C
. 

Matrix C contains the desired values of I1, I2, I3, and I4 in rectangular form. Their phasor 

forms are easy to compute: 

Keystrokes Display  

´>1  C     4    2 Resets R0 and R1. 

´i4  C     4    2  

lC  1.9550   -04 Recalls Re(I1). 

lC  4.0964   -03 Recalls Im(I1). 

®|: 4.1013   -03 Displays |I1|. 

®  8.7212    01 Displays Arg(I1) in degrees. 

lC -1.4489   -03  

lC -3.5633   -02  

®|:  3.5662   -02 Displays |I2|. 

® -9.2328    01  

lC -1.4541   -03  

lC -3.5633   -02  

®|:  3.5662   -02 Displays |I3|. 

® -9.2337    01  

lC  5.3446   -05  

lC -2.2599   -06  

®|:  5.3494   -05 Displays |I4|. 

® -2.4212    00  

®“5*  5.3494    00 Calculates |V0| = (R3)|I4|. 

´•4  5.3494  

´U  5.3494 Deactivates User mode. 

The output voltage is 5.3494 ∠ −2.4212°. 
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Least-Squares Using Normal Equations 

The unconstrained least-squares problem is known in statistical literature as multiple linear 

regression. It uses the linear model 





p

j

jj rxby
1

 

Here, b1, …, bp are the unknown parameters, xl, ..., xp are the independent (or explanatory) 

variables, y is the dependent (or response) variable, and r is the random error having 

expected value E(r) = 0, variance σ
2
. 

After making n observations of y and x1, x2, ..., xp, this problem can be expressed as 

y = Xb + r 

where y is an n-vector, X is an n × p matrix, and r is an n-vector consisting of the unknown 

random errors satisfying E(r) = 0 and Cov(r) = E(rr
T
) = σ

2
In. 

If the model is correct and X
T
X has an inverse, then the calculated least-squares solution 

yXXXb
TT 1)(ˆ   has the following properties: 

 E( b̂ ) = b, so that b̂  is an unbiased estimator of b. 

 Cov( b̂ ) = E(( b̂  − b)
T
( b̂  − b)) =  σ

2
(X

T
X)

–l
, the covariance matrix of the estimator b̂ . 

 E( r̂ ) = 0, where r̂  = y − X b̂  is the vector of residuals. 

 22 )()||ˆ(||E pnF  bXy , so that )/(||ˆ||ˆ 22 pnF  r  is an unbiased estimator for 

σ
2
. You can estimate Cov( b̂ ) by replacing σ

2
 by 2̂ . 

The total sum of squares 2|||| Fy   can be partitioned according to 

2|||| Fy
 = y

T
y 

= (y − X b̂  + X b̂ )
T
(y − X b̂  + X b̂ ) 

= (y − X b̂ )
T
(y − X b̂ ) - 2 b̂ T

X
T
(y − X b̂ ) + (X b̂ )

T
(X b̂ ) 

= 22 ||ˆ||||ˆ|| FF bXbXy   

= 

















SquaresofSum

Regression

SquaresofSum

Residual
. 

When the model is correct, 

  2222 ||||||ˆ||E   pp FF XbbX  
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and 

  .)(||ˆ||E 22  pnFbXy  

For b ≠ 0. When the simpler model y = r is correct, both of these expectations equal σ
2
. 

You can test the hypothesis that the simpler model is correct (against the alternative that the 

original model is correct) by calculating the F ratio 

)(||ˆ||

||ˆ||
2

2

pn

p
F

F

F




bXy

bX
 

F will tend to be larger when the original model is true (b ≠ 0) than when the simpler model 

is true (b = 0). You reject the hypothesis when F is sufficiently large. 

If the random errors have a normal distribution, the F ratio has a central F distribution with p 

and (n − p) degrees of freedom if b = 0, and a non central distribution if b ≠ 0. A statistical 

test of the hypothesis (with probability α of incorrectly rejecting the hypothesis) is to reject 

the hypothesis if the F ratio is larger than the 100α percentile of the central F distribution 

with p and (n – p) degrees of freedom; otherwise, accept the hypothesis. 

The following program fits the linear model to a set of n data points xi1, xi2, …, xip, yi by the 

method of least-squares. The parameters b1, b2, …, bp are estimated by the solution b̂  to the 

normal equations X
T
Xb = X

T
y. The program also estimates σ

2
 and the parameter covariance 

matrix Cov( b̂ ). The regression and residual sums of squares (Reg SS and Res SS) and the 

residuals are also calculated. 

The program requires two matrices: 

Matrix A: n × p with row i (xi1, xi2, …, xip ) for i = 1, 2, ... , n. 

Matrix B: n × 1 with element i (yi) for i = 1, 2, ... , n. 

The program output is: 

Matrix A: unchanged. 

Matrix B: n × 1 containing the residuals from the fit (yi − 1b̂ xi1 − … − pb̂ xip)      

for i = 1,   2, ... , n, where ib̂  is the estimate for bi. 

Matrix C: p × p covariance matrix of the parameter estimates. 

Matrix D: p × 1 containing the parameter estimates 1b̂ , …, pb̂ . 

T-register: contains an estimate of σ
2
. 

Y-register: contains the regression sum of squares (Reg SS). 

X-register: contains the residual sum of squares (Res SS). 
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The analysis of variance (ANOVA) table below partitions the total sum of squares (Tot SS) 

into the regression and the residual sums of squares. You can use the table to calculate the F 

ratio. 

ANOVA Table 

Source Degrees of 
Freedom 

Sum of Squares Mean Square F Ratio 

Regression p Reg SS 

p

)( SSReg
 

)(

)(

MSRes

MSReg
 

Residual n – p 

 

Res SS 

 )(

)(

pn 

SSReg   

Total n Tot SS   

The program calculates the regression sum of squares unadjusted for the mean because a 

constant term may not be in the model. To include a constant term, include in the model a 

variable that is identically equal to one. The corresponding parameter is then the constant 

term. 

To calculate the mean-adjusted regression sum of squares for a model containing a constant 

term, first use the program to fit the model and to find the unadjusted regression sum of 

squares. Then fit the simpler model y = b1 + r by dropping all variables but the one 

identically equal to one (b1 for example) and find the regression sum of squares for this 

model, (Reg SS)C. The mean adjusted regression sum of squares (Reg SS)A = Reg SS − (Reg 

SS)C. Then the ANOVA table becomes: 

ANOVA Table 

Source Degrees of 
Freedom 

Sum of Squares Mean Square F Ratio 

Regression 
Constant 

p − 1 (Reg SS)A 

p

ASSReg )(
 

)(

)(

MSRes

MSReg A  

Constant 1 (Reg SS)C (Res SS)C  

Residual n – p 

 

Res SS 

 )(

)(

pn 

SSReg
 

 

Total n Tot SS   

You can then use the F ratio to test whether the full model fits data significantly better than 

the simpler model y = b1 + r. 

You may want to perform a series of regressions, dropping independent variables between 

each. To do this, order the variables in the reverse order that they will be dropped from the 

model. They can be dropped by transposing the matrix A, redimensioning A to have fewer 

rows, and then transposing A once again. 
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You will need the original dependent variable data for each regression. If there is not enough 

room to store the original data in matrix E, you can compute it from the output of the 

regression fit. A subroutine has been included to do this. 

This program has the following characteristics: 

 If the entire program is keyed into program memory, the sizes of n and p are required 

to satisfy n ≥ p and (n + p)(p + 1) ≤ 56. That is, 

if p is 1 2 3 4 

then nmax is 27 16 11 7 

This assumes that only data storage registers R0 and R1 are allocated. If subroutine 

"B" is omitted, then n ≥ p and (n + p)(p + 1) ≤ 58. That is, 

if p is 1 2 3 4 

then nmax is 28 17 11 7 

 Even though subroutine “B” uses the residual function with its extended precision, 

the computed dependent variable data may not exactly agree with the original data. 

The agreement will usually be close enough for statistical estimation and tests. If 

more accuracy is desired, the original data can be reentered into matrix B. 

 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bA  001-42,21,11 Program to fit model. 

l>B  002-45,16,12  

´>8  003-42,16, 8  

|x  004-   43 11 Calculates Tot SS. 

l>A  005-45,16,11  

v  006-      36  

´<C  007-42,26,13  

´>5  008-42,16, 5 Calculates C = A
T
A. 

|K  009-   43 36  

l>B  010-45,16,12  

´<Á  011-42,26,14  

´>5  012-42,16, 5 Calculates D = A
T
B. 

®  013-      34  

÷  014-      10 Calculates parameters in D. 

l>A  015-45,16,11  

®  016-      34  

´<B  017-42,26,12  
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Keystrokes Display  

´>6  018-42,16, 6 Calculates residuals of fit in B. 

´>8  019-42,16, 8  

|x  020-   43 11 Calculates Res SS. 

lmA  021-45,23,11  

-  022       30  

÷  023-      10 Calculates σ
2
 estimate. 

v  024-      36  

v  025-      36  

l>C  026-45,16,13  

´<C  027-42,26,13  

÷  028-      10 Calculates covariance matrix in C. 

|(  029-   43 33  

l>B  030-45,16,12  

´>8  031-42,16, 8  

|x  032-   43 11  

-  033-      30 Calculates Reg SS. 

|K  034-   43 36 Returns Res SS. 

|n  035-   43 32  

´bB  036-42,21,12 Subroutines to reconstruct 

dependent variable data. 

l>A  037-45,16,11  

l>Á  038-45,16,14  

”  039-      16  

´<B  040-42,26,12  

´>6  041-42,16, 6 Calculates B = B + AD. 

l>Á  042-45,16,14  

”  043-      16  

|n  044-   43 32  

Labels used: A and B. 

Registers used: R0 and R1. 

Matrices used: A, B, C, and D. 

To use this program: 

1. Press 1 ´m% to reserve registers R0 and R1. 

2. Dimension matrix A according to the number of observations n and the number of 

parameters p by pressing n v p ´mA. 

3. Dimension matrix B according to the number of observations n (and one column) by 

pressing n v 1 ´mB. 
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4. Press ´> 1 to set registers R0 and R1. 

5. Press ´U to activate User mode. 

6. For each observation, store the values of the p variables in a row of matrix A. Repeat 

this for the n observations. 

7. Store the values of the dependent variable in matrix B. 

8. Press A to calculate and display the Res SS. The Y-register contains the Reg SS and 

the T-register contains the σ
2 

estimate. 

9. Press lÁ to observe each of the p parameter estimates. 

10. If desired, press B to recalculate the dependent variable data in matrix B. 

Example: Compare two regression models of the annual change in the consumer price index 

(CPI) using the annual change in the producer price index (PPI) and the unemployment rate 

(UR): 

Y = b1 + b2x2 + b3x3 + r     and     y = b1 + b2x2 + r , 

where y, x2, and x3 represent CPl, PPl, and UR (all as percentages). Use the following data 

from the U.S.: 

 

Year CPI PPI UR 

1969 5.4 3.9 3.5 

1970 5.9 3.7 4.9 

1971 4.3 3.3 5.9 

1972 3.3 4.5 5.6 

1973 6.2 13.1 4.9 

1974 11.0 18.9 5.6 

1975 9.1 9.2 8.5 

1976 5.8 4.6 7.7 

1977 6.5 6.1 7.0 

1978 7.6 7.8 6.0 

1979 11.5 19.3 5.8 

Keystrokes Display  

|¥  Run mode. 

´>0   

11v3  3  

´mA  3.0000 Dimensions A as 11 × 3. 

11v1  1  

´mB  1.0000 Dimensions B as 11 × 1. 
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´>1  1.0000  

´U  1.0000  

1OA  1.0000 Enters independent variable data. 

3.9OA  3.9000  

3.5OA  3.5000  

 ⋮  ⋮  

1OA  1.0000  

19.3OA  19.3000  

5.8OA  5.8000  

5.4OB  5.4000 Enters dependent variable data. 

5.9OB  5.9000  

 ⋮  ⋮  

11.5OB  11.5000  

A´•9  13.51217504 Res SS for full model. 

)  587.9878252 Reg SS for full model. 

))  1.689021880 σ
2 

estimate. 

lÁ  1.245864326 b1 estimate. 

lÁ  0.379758235 b2 estimate. 

lÁ  0.413552218 b3 estimate. 

B  d      3  1 Recalculates dependent data. 

l>A  A     11  3  

´>4  A      3 11  

2v11  11  

´mA  11.00000000 Drops last column of A. 

l>A  A      2 11  

´>4  A     11  2 New A matrix. 

A  16.78680552 Res SS for reduced model. 

)  584.7131947 Reg SS for reduced model. 

))  1.865200613 σ
2 

estimate. 

lÁ  3.701730745 b1 estimate. 

lÁ  0.380094935 b2 estimate. 

B  d      2  1 Recalculates dependent data. 

l>A  A     11  2  

´>4  A      2 11  

1v11  11  

´mA  11.00000000 Drops last column of A. 

l>A  A      1 11  

´>4  A     11  1 New A matrix. 

A  68.08545454 Res SS. 

)  533.4145457 Reg SS for constant. 

))  6.808545454 σ
2 

estimate. 



118 Section 4: Using Matrix Operations 

118 

lÁ  6.963636364 b1 estimate. 

´U  6.963636364 Deactivates User mode. 

´•4  6.9636  

The Reg SS for the PPI variable adjusted for the constant term is 

(Reg SS for reduced model) − (Reg SS for constant) = 51.29864900. 

The Reg SS for the UR variable adjusted for the PPI variable and the constant term is 

(Reg SS for full model) – (Reg SS for reduced model) = 3.274630500. 

Now construct the following ANOVA table: 

Source Degrees of 
Freedom 

Sum of 
Squares 

Mean Square F Ratio 

UR | PPI, Constant 1 3.2746305 3.2746305 1.939 

PPI | Constant 1 51.2986490 51.2986490 30.37 

Constant 1 533.4145457 533.4145457 315.8 

Residual (full model) 8 13.5121750 1.68902188  

Total 11 601.5000002   

The F ratio for the unemployment rate, adjusted for the producer price index change and the 

constant is not statistically significant at the 10-percent significance level (α = 0.1). Including 

the unemployment rate in the model does not significantly improve the CPI fit. 

However, the F ratio for the producer price index adjusted for the constant is significant at 

the 0.1 percent level (α = 0.001). Including the PPI in the model does improve the CPI fit. 

Least-Squares Using Successive Rows 

This program uses orthogonal factorization to solve the least-squares problem. That is, it 

finds the parameters b1, …, bp  that minimize the sum of squares )()(|||| 2 XbyXbyr T
F  given 

the model data 
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and yX . 

The program does this for successively increasing values of n, although the solution b = b
(n)

 

is meaningful only when n ≥ p. 

It is possible to factor the augmented n × (p + 1) matrix [X y] into Q
T
V, where Q is an 

orthogonal matrix, 
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)rows1(

),row1(

rows)(ˆ



















pn

p

q

00

0

gU

V  

and Û is an upper-triangular matrix. If this factorization results from including n rows rm = 

(xm1, xm2, …, xmp, ym ) for m = 1, 2, ... , n in [X   y], consider how to advance to n + 1 rows 

by appending row rn+1 to[X   y]: 


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The zero rows of V are discarded. 

Multiply the (p + 2) × (p + 1) matrix 

)1(

)1(

)(ˆ

1 row
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rowsp

q

n
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0
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A  

by a product of elementary orthogonal matrices, each differing from the identity matrix Ip+2 
In only two rows and two columns. For k = 1, 2, ... , p + 1 in turn, the k th orthogonal matrix 

acts on the k th and last rows to delete the k th element of the last row to alter subsequent 

elements in the last row. The k th orthogonal matrix has the form 
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where c = cos(θ), s = sin(θ), and θ = tan
-1

(ap+2,k / akk). After p + 1 such factors have been 

applied to matrix A, it will look like 
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)row1(

),row1(

rows)(
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Where U
*
 is also an upper-triangular matrix. You can obtain the solution b

(n+1)
 to the 

augmented system of p + 1 rows by solving 
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By replacing the last row of A* by rn+2 and repeating the factorization, you can continue 

including additional rows of data in the system. You can add rows indefinitely without 

increasing the required storage space. 

The program below begins with n = 0 and A = 0. You enter the rows rm successively for m = 

1, 2, ..., p − 1 in turn. You then obtain the current solution b after entering each subsequent 

row. 

You can also solve weighted least-squares problems and linearly constrained least-squares 

problems using this program. Make the necessary substitutions described under Orthogonal 

Factorization earlier in this section. 

Keystrokes Display  

|¥  Program mode. 

´CLEAR M  000-  

´bA  001-42,21,11 Program to input new row. 

O2  002-   44  2 Stores weight in R2. 

1  003-       1  

O1  004-   44  1 Stores l = 1 in R1. 

´b4  005-42,21, 4  

lmA  006-45,23,11  

®  007-      34  

O0  008    44  0 Stores k = p + 2 in R0. 

´b5  009-42,21, 5  

l1  010-   45  1  

¦  011-      31  

l2  012-   45  2  

*  013-      20  

´UOA  014u   44 11  

´U   

t5  015-   22  5  

t4  016-   22  4  

´bB  017-42,21,12 Program to update matrix A. 
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Keystrokes Display  

lmA  018-45,23,11 Recalls dimensions p + 2 and p 

+ 1. 

®  019-      34  

O2  020-   44  2 Stores p + 2 in R2. 

´>1  021-42,16, 1 Sets k = l = 1; 

´b1  022-42,21, 1 Branch to update ith row. 

|"0  023-43, 5, 0  

l2  024-   45  2  

l0  025-   45  0  

l|A  026-45,43,11 Recalls ap+2,k. 

lA  027-   45 11 Recalls akk. 

|T2  028-43,30, 2 Tests akk < 0. 

|F0  029-43, 4, 0 Sets flag 0 for negative diagonal 

element. 

|a  030-   43 16  

|:  031-   43  1 Calculates θ 

|`  032-   43 35  

1  033-       1  

´;  034-   42  1 Calculates x = cos θ and             

y = sin θ. 

|?0  035-43, 6, 0  

”  036-      16 Sets x = c and y = s. 

´V  037-   42 25 Forms s + ic. 

)  038-      33  

´b2  039-42,21, 2 Subroutine to rotate row k. 

|(  040-   43 33  

lA  041-   45 11 Recalls akl. 

l2  042-   45  2  

l1  043-   45  1  

l|A  044-45,43,11 Recalls ap+2,l. 

´V  045-   42 25 Forms akl – iap+2,l. 

*  046-      20  

l2  047-   45  2  

l1  048-   45  1  

O|A  049-44,43,11 Stores new akl. 

´}  050-   42 30  

´UOA 
´U 

 051u   44 11 Stores new ap+2,l, increments R0 

and R1. 

l1  052-   45  1 Recalls l (column). 
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Keystrokes Display  

l0  053-   45  0 Recalls k (row). 

|£  054-   43 10 Tests k ≤ l. 

t2  055-   22  2 Loops back until column reset to 

1. 

|"8  056-43  5  8 Turns off Complex mode. 

O1  057-   44  1 Stores k in R1 (l). 

l2  058-   45  2  

|£  059-   43 10 Tests p + 2 ≤ k. 

|n  060-   43 32 Returns to last row. 

t1  061-   22  1 Loops back until last row. 

´bC  062-42,21,13 Program to calculate current 

solution. 

lmA  063-45,23,11  

v  064-      36  

´mA  065-42,23,11 Eliminates last row of A. 

O0  066-   44  0 Stores p + 1 in R0. 

O1  067-   44  1 Stores p + 1 in R1. 

1  068-       1  

´mC  069-42,23,13 Dimensions matrix C to  

(p + 1) × 1. 

0  070-       0  

O>C  071-44,16,13 Sets matrix C to 0. 

“  072-      26  

9  073-       9  

9  074-       9  

”  075-      16 Forms 10
−99

. 

lA  076-   45 11 Recalls q = ap+1,p+1. 

|~  077-   43 20 Tests q = 0. 

)  078       33 Uses 10
−99

 if q = 0. 

”  079-      16  

l0  080-   45  0  

1  081-       1  

O|C  082-44,43,13 Sets cp+1,1 = −q. 

l>C  083-45,16,13  

l>A  084-45,16,11  

´<C  085-42,26,13  

÷  086-      10 Stores A
−1

C in C. 

l0  087-   45  0  

1  088-       1  
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Keystrokes Display  

+  089-      40  

l0  090-   45  0  

´mA  091-42,23,11 Dimensions matrix A as  

(p + 2) × (p + 1) 

1  092-       1  

-  093-      30  

1  094-       1  

´mC  095-42,23,13 Dimensions matrix C as p × 1. 

lA  096-   45 11 Recalls q. 

´>1  097-42,16, 1 Sets k = l = 1. 

|n  098-   43 32  

Labels used: A, B, C, and 1 through 5. 

Registers used: R0, R1, and R2 (p+2 and w) 

Matrices used: A (working matrix) and C (parameter estimates). 

Flags used: 0 and 8. 

With this program stored, the HP-15C has enough memory to work with up to p = 4 

parameters. If programs "A" and "C" are deleted, you can work with p = 5 parameters. In 

either case, there is no limit to the number of rows that you can enter. 

To use this program: 

1. Press 2 ´m% to reserve registers R0 through R2. 

2. Press ´U to activate User mode. 

3. Enter (p + 2) and (p + 1) into the stack, then press ´mA to dimension 

matrix A. The dimensions depend on the number of parameters that you use, denoted 

by p. 

4. Press 0 O>A to initialize matrix A. 

5. Enter the weight wk of the current row, then press A. The display should show 

1.0000 to indicate that the program is ready for the first row element. (For ordinary 

least-squares problems, use wk = 1 for each row.) 

6. Enter the elements of the row m of matrix A by pressing 

xm1¦xm2¦…xmp¦ym¦. After each element is entered, the display 

should show the number of the next element to be entered. (If you make a mistake 

while entering the elements, go back and repeat steps 5 and 6 for that row. 

7. Press B to update the factorization to include the row entered in the previous two 

steps 
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8. Optionally, press C|x to calculate and display the residual sum of squares q
2
 

and to calculate the current solution b. Then press lCp times to display b1, b2, 

…, bp in turn. 

9. Repeat steps 5 through 8 for each additional row. 

Example: Use this program and the CPI data from the previous example to fit the model 

y = bl + b2x2 + b3x3 + r, 

where y, x2, and x3 represent the CPI, PPI, and UR (all as percentages). 

This problem involves p = 3 parameters, so matrix A should be 5 × 4. The rows of matrix A 

are (1, xm2, xm3, ym) for m = 1,2, ... , 11. Each row has weight wm = 1. 

Keystrokes Display  

|¥  Run mode. 

2´m%  2.0000 Reserves R0 through R2. 

´U  2.0000 Activates User mode. 

´>0  2.0000 Clears matrix memory. 

5v4  4  

´mA  4.0000 Dimensions matrix A to 5 ×4. 

0O>A  0.0000 Stores zero in all elements. 

1A  1.0000 Enters weight for row 1. 

1¦  2.0000 Enters x11. 

3.9¦  3.0000 Enters x12. 

3.5¦  4.0000 Enters x13. 

5.4¦  1.0000 Enters y1. 

B  5.0000 Updates factorization. 

 ⋮  ⋮  

1A  1.0000 Enters weight for row 11. 

1¦  2.0000 Enters x11,1. 

19.3¦  3.0000 Enters x11,2. 

5.8¦  4.0000 Enters x11,3. 

11.5¦  1.0000 Enters y11. 

B  5.0000 Updates factorization. 

C  3.6759 Calculates current estimates and q. 

´•9  3.675891055  

|x  13.51217505 Calculates residual sum of squares 

q
2
. 

lC  1.245864306 Displays )11(
1

b . 

lC  0.379758235 Displays )11(
2

b . 

lC  0.413552221 Displays )11(
3

b . 
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These estimates agree (to within 3 in the ninth significant digit) with the results of the 

preceding example, which uses the normal equations. In addition, you can include additional 

data and update the parameter estimates. For example, add this data from 1968: CPI = 4.2, 

PPI = 2.5 and UR = 3.6. 

Keystrokes Display  

1A  1.000000000 Enters row weight for new row. 

1¦  2.000000000 Enters x12,1. 

2.5¦  3.000000000 Enters x12,2. 

3.6¦  4.000000000 Enters x12,3. 

4.2¦  1.000000000 Enters y12. 

B  1.000000000 Updates factorization. 

C  3.700256908  

|x  13.691900119 Calculates residual sum of 

squares. 

lC  1.581596327 Displays )12(
1

b . 

lC  0.373826487 Displays )12(
2

b . 

lC  0.370971848 Displays )12(
3

b . 

´•4  0.3710  

´U  0.3710 Deactivates User mode. 

Eigenvalues of a Symmetric Real Matrix 

The eigenvalues of a square matrix A are the roots λj of its characteristic equation 

det(A − λI) = 0. 

When A is real and symmetric (A = A
T
) its eigenvalues λj are all real and possess orthogonal 

eigenvectors qj. Then 

Aqj= λjqj 

and 










.1

0

kjif

kjif
k

T

j qq  

The eigenvectors (q1, q2,…) constitute the columns of an orthogonal matrix Q which satisfies 

Q
T
AQ = diag(λ1, λ2, …) 

and 

Q
T
 = Q

−1
. 
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An orthogonal change of variables x = Qz, which is equivalent to rotating the coordinate 

axes, changes the equation of a family of quadratic surfaces (x
T
Ax = constant) into the form 

.constantλ)( 2 
k

j

jj

TT
zzAQQz  

With the equation in this form, you can recognize what kind of surfaces these are (ellipsoids, 

hyperboloids, paraboloids, cones, cylinders, planes) because the surface's semi-axes lie along 

the new coordinate axes. 

The program below starts with a given matrix A that is assumed to be symmetric (if it isn't, it 

is replaced by (A + A
T
)/2, which is symmetric). 

Given a symmetric matrix A, the program constructs a skew-symmetric matrix (that is, one 

for which B = −B
T
) using the formula 












.00

0)))/(2(tan¼tan( -1

ij

ijjjiiij

ij
aorjiif

aandjiifaaa
b  

Then Q = 2(I + B)
−1

 − I must be an orthogonal matrix whose columns approximate the 

eigenvalues of A; the smaller are all the elements of B, the better the approximation. 

Therefore Q
T
AQ must be more nearly diagonal than A but with the same eigenvalues. If 

Q
T
AQ is not close enough to diagonal, it is used in place of A above for a repetition of the 

process. 

In this way, successive orthogonal transformations Q1, Q2, Q3, ... are applied to A to produce 

a sequence A1, A2, A3, ... , where 

Aj = (Q1 Q2… Qj)
T
AQ1Q2…Qj 

with each successive Aj more nearly diagonal than the one before. 

This process normally leads to skew matrices whose elements are all small and Aj rapidly 

converging to a diagonal matrix A. However, if some of the eigenvalues of matrix A are very 

close but far from the others, convergence is slow; fortunately, this situation is rare. 

The program stops after each iteration to display 




j
Fj

j

A

A |ofelementsdiagonaloff|

2

1
 

which measures how nearly diagonal is Aj. If this measure is not negligible, you can press 

¦ to calculate Aj+1; if it is negligible, then the diagonal elements of Aj approximate the 

eigenvalues of A. The program needs only one iteration for 1 × 1 and 2 × 2 matrices, and 

rarely more than six for 3 × 3 matrices. For 4 × 4 matrices the program takes slightly longer 

and uses all available memory; usually 6 or 7 iterations are sufficient, but if some 

eigenvalues are very close to each other and relatively far from the rest, then 10 to 16 

iterations may be needed. 
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Keystrokes Display  

|¥  Program mode. 

´CLEARM  000  

´bA  001-42,21,11  

l>A  002-45,16,11  

O>B  003-44,16,12 Dimensions B. 

O>C  004-44,16,13 Dimensions C. 

´>4  005-42,16, 4 Transposes A. 

l>B  006-45,16,12  

O<  007-   44 26  

+  008-      40  

2  009-       2  

÷  010-      10  

O>A  011-44,16,11 Calculates A = (A + A
T
)/2 

´>8  012-42,16, 8 Calculates ||A||F. 

O2  013-   44  2 Stores ||A||F in R2. 

|`  014-   43 35  

O3  015-   44  3 Initializes off-diagonal sum. 

O>C  016-44,16,13 Sets C = 0. 

´>1  017-42,16, 1 Sets R0 = R1 = 1. 

´b0  018-42,21, 0 Routine to construct Q. 

l0  019-   45  0  

l1  020-   45  1  

|T5  021-43,30, 5 Tests column = row. 

t3  022-   22  3  

|T7  023-43,30, 7 Tests column > row 

t1  024-   22  1  

®  025-      34  

l|B  026-45,43,12  

”  027-      16  

´UOB  028u   44 12 Sets bij = −bji. 

´U   

t0  029-   22  0  

´b1  030-42,21, 1 Routine for column > row. 

l|A  031-43,43,11  

|a  032-   43 16 Calculates |aij|. 

O+3  033-44,40, 3 Accumulates off-diagonal sum. 

|K  034-   43 36  

v  035-      36  

+  036-      40 Calculates 2aij. 
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Keystrokes Display  

l0  037-   45  0  

v  038-      36  

l|A  039-45,43,11 Recalls aii. 

l1  040-   45  1  

v  041-      36  

l|A  042-45,43,11 Recalls ajj. 

-  043-      30 Calculates aii −ajj. 

|T3  044-43,30, 3 Tests x ≥ 0. 

t2  045-   22  2  

”  046-      16 Keeps angle of rotation between 

−90° and 90°. 

®  047-      34  

”  048-      16  

®  049-      34  

´b2  050-42,21, 2  

|:  051-   43  1 Calculates angle of rotation. 

|`  052-   43 35  

4  053-       4  

÷  054-      10  

]  055-      25 Calculates bij. 

´UOB  056u   44 12  

´U   

t0  057-   22  0  

´b3  058-42,21, 3 Routine for row = column. 

1  059-       1  

OC  060-   44 13 Sets cii = 1. 

´UOB  061u   44 12 Sets bii = 1. 

´U   

t0  062-   22  0  

l3  063-   45  3  

l÷2  064-45,10, 2 Calculates off-diagonal ratio. 

¦  065-      31 Displays ratio. 

2  066-       2  

l>B  067-45,16,12  

÷  068-      10  

l>C  069-45,16,13  

-  070-      30 Calculates B = 2(I + skew)
−1 

– I. 

l>A  071-45,16,11  

´<C  072-42,26,13  
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Keystrokes Display  

´>5  073-42,16, 5 Calculates C = B
T
A. 

l>B  074-45,16,12  

´<A  075-42,26,11  

*  076-      20 Calculates A = B
T
AB. 

tA  077-   22 11  

Labels used: A, 0, 1, 2, and 3. 

Registers used: R0, R1, R2 (off-diagonal sum), and R3 (||Aj||F). 

Matrices used: A (Aj), B (Qj), and C. 

To use the program: 

1. Press 4 ´m% to reserve registers R0 through R4. 

2. Press ´U to activate User mode. 

3. Dimension and enter the elements of matrix A using ´mA and OA. 

The dimensions can be up to 4 × 4, provided that there is sufficient memory available 

for matrices B and C having the same dimensions also. 

4. Press A to calculate and display the off-diagonal ratio. 

5. Press ¦ repeatedly until the displayed ratio is negligible, say less than 10
−8

. 

6. Press lA repeatedly to observe the elements of matrix A. The diagonal 

elements are the eigenvalues. 

Example: What quadratic surface is described by the equation below? 
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   = 2
21 xx  + 4

31 xx + 2
2

2x  + 6
32 xx  + 4

3

3x  

     = 7 

Keystrokes Display  

|¥  Run mode. 

4´m%  4.0000 Allocates memory. 

´U  4.0000 Activates User mode. 

3v´mA  3.0000 Dimensions A to 3 × 3. 

´>1  3.0000 Sets R0 and R1 to 1. 

0OA  0.0000 Enters a11. 

1OA  1.0000 Enters a12. 
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Keystrokes Display  

 ⋮    

3OA  3.0000 Enters a32. 

4OA  4.0000 Enters a33. 

A  0.8660 Calculates ratio－too large. 

¦  0.2304 Again, too large. 

¦  0.1039 Again, too large. 

¦  0.0060 Again, too large. 

¦  3.0463   -05 Again, too large. 

¦  5.8257   -10 Negligible ratio. 

lA -0.8730 Recalls a11=λ1. 

lA -9.0006   -10 Recalls a12. 

lA -2.0637   -09 Recalls a13. 

lA -9.0006   -10 Recalls a21. 

lA  9.3429   -11 Recalls a22=λ2. 

lA  1.0725   -09 Recalls a23. 

lA -2.0637   -09 Recalls a31. 

lA  1.0725   -09 Recalls a32. 

lA  6.8730 Recalls a33=λ3. 

´U  6.8730 Deactivates User mode. 

In the new coordinate system the equation of the quadratic surface is approximately 

−0.8730
2

1z  + 0
2

2z  + 6.8730
2

3z  = 7 

This is the equation of a hyperbolic cylinder. 

Eigenvectors of a Symmetric Real Matrix 

As discussed in the previous application, a real symmetric matrix A has real eigenvalues λ1, 

λ2 ... and corresponding orthogonal eigenvectors ql, q2, ... . 

This program uses inverse iteration to calculate an eigenvector qk that corresponds to the 

eigenvalue λk such that ||qk||R = 1. The technique uses an initial vector z
(0)

 to calculate 

subsequent vectors w
(n)

 and z
(n)

 repeatedly from the equations 

  )()1( nn
zwIA    

R

nnn s )1()1()1(   wwz  

where s denotes the sign of the first component of w
(n+1)

 having the largest absolute value. 

The iterations continue until z
(n)

 converges. That vector is an eigenvector qk corresponding to 

the eigenvalue λk. 
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The value used for λk need not be exact; the calculated eigenvector is determined accurately 

in spite of small inaccuracies in λk. Furthermore, don't be concerned about having too 

accurate an approximation to λk; the HP-15C can calculate the eigenvector even when          

A − λk I  is very ill-conditioned. 

This technique requires that vector z
(0)

 have a nonzero component along the unknown 

eigenvector qk.. Because there are no other restrictions on z
(0)

, the program uses random 

components for z
(0)

. At the end of each iteration, the program displays ||z
(n+1) − z

(n)
||R to show 

the rate of convergence. 

This program can accommodate a matrix A that isn't symmetric but has a diagonal Jordan 

canonical form−that is, there exists some nonsingular matrix P such that P
-1

AP= diag(λ1, λ2, 

…). 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´bC  001-42,21,13  

O2  002-   44  2 Stores eigenvalue in R2 

l>A  003-45,16,11  

O>B  004-44,16,12 Stores A in B. 

lmA  005-45,23,11  

O0  006-   44  0  

´b4  007-42,21, 4  

l0  008-   45  0  

O1  009-   44  1  

lB  010-   45 12  

l-2  011-45,30, 2  

OB  012-   44 12 Modifies diagonal elements of 

B. 

´e0  013-42, 5, 0  

t4  014-   22  4  

lmA  015-45,23,11  

1  016-       1  

´mC  017-42,23,13 Dimensions C to n × 1. 

´>1  018-42,16, 1  

´b5  019-42,21, 5  

´#  020-   42 36  

´UOC´
U 

 021u   44 13 Stores random components in 

C. 

t5  022-   22  5  

´b6  023-42,21, 6 Routine for iterating z
(n)

 and 

w
(n)

. 
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Keystrokes Display  

l>C  024-45,16,13  

O>Á  025-44,16,14 Stores z
(n)

 in D. 

O<  026-   44 26  

l>B  027-45,16,12  

÷  028-      10 Calculates w
(n+1) 

in C. 

v  029-      36  

´>7  030-42,16, 7  

÷  031-      10 Calculates ±z
(n+1)

 in C. 

´>1  032-42,16, 1  

´b7  033-42,21, 7 Routine to find sign of largest 

element. 

´UlC 
´U 

 034u   45 13  

v  035-      36 (This line skipped for last 

element.) 

|a  036-   43 16  

1  037-       1  

|T6  038-43,30, 6 Tests |aj|≠1 

t7  039-   22  7  

l>C  040-45,16,13  

|K  041-   43 36 Recalls extreme aj. 

÷  042-      10 Calculates z
(n+1)

 in C. 

l>Á  043-45,16,14  

O<  044-   44 26  

-  045-      30 Calculates z
(n+1)－z

(n)
 in D. 

´>7  046-42,16, 7 Calculates ||z
(n+1)－z

(n)
||R. 

´>1  047-42,16, 1 Sets R0＝R1＝1 for viewing C. 

¦  048-      31 Displays convergence 

parameter. 

t6  049-   22  6  

Labels used: C, 4, 5, 6, and 7. 

Registers used: R0, R1, and R2 (eigenvalue). 

Matrices used: A (original matrix), B (A − λI), C (z
(n+1)

), and D (z
(n+1)

 − z
(n)

). 

To use this program: 

1. Press 2 ´m% to reserve registers R0, R1, and R2. 

2. Press ´U to activate User mode. 
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3. Dimension and enter the elements into matrix A using ´mA, ´>1, 

and OA. 

4. Key in the eigenvalue and press C. The display shows the correction parameter    

||z
(1) − z

(0)
||R. 

5. Press ¦ repeatedly until the correction parameter is negligibly small. 

6. Press lC repeatedly to view the components of qk, the eigenvector. 

Example: For matrix A of the previous example, 



















432

321

210

A  

Calculate the eigenvectors q1, q2, and q3. 

Keystrokes Display  

|¥  Run mode. 

2´m%  2.0000 Reserves registers R0 through 

R2. 

´U  2.0000 Activates User mode. 

3v´mA  3.0000 Dimensions A to 3 × 3. 

´>1  3.0000  

0OA  0.0000 Enters elements of A 

1OA  1.0000  

 ⋮    

4OA  4.0000  

.8730” -0.8730 Enters λ1=−0.8730 

(approximation). 

C  0.8982 ||z
(1) − z(0)

||.* 

¦  0.0001 
||z

(2) − z(1)
||.* 

¦  2.4000   -09 
||z

(3) − z(2)
||.* 

¦  1.0000   -10 
||z

(4) − z(3)
||.* 

¦  0.0000 
||z

(5) − z(4)
||.* 

lC  1.0000  

lC  0.2254 Eigenvector forλ1. 

lC -0.5492  

0C  0.8485 Uses λ2=0 (approximation). 

¦  0.0000  

   

                                                           

* The correction norms will vary, depending upon the current random number seed. 
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Keystrokes Display  

lC -0.5000 

lC  1.0000 Eigenvector forλ2. 

lC -0.5000  

6.8730C  0.7371 Uses λ3=6.8730 

(approximation). 

¦  1.9372   -06  

¦  1.0000   -10  

¦  0.0000  

lC  0.3923  

lC  0.6961 Eigenvector forλ3. 

lC  1.0000  

´U  1.0000 Deactivates User mode. 

If matrix A is no larger than 3×3, this program can be included with the previous eigenvalue 

program. Since the eigenvalue program modifies matrix A, the original eigenvalues must be 

saved and the original matrix reentered in matrix A before running the eigenvector program. 

The following program can be added to store the calculated eigenvalues in matrix E. 

Keystrokes Display  

´bE  127-42,21,15  

lmA  128-45,23,11  

O0  129-   44  0  

1  130-       1  

´mE  131-42,23,15 Dimensions E to n × 1. 

´b8  132-42,21, 8  

l0  133-   45  0  

v  134-      36  

l|A  135-45,43,11 Recalls diagonal element. 

l0  136-   45  0  

1  137-       1  

O|E  138-44,43,15 Stores aii in ei. 

´e0  139-42, 5, 0  

t8  140-   22  8  

´>1  141-42,16, 1 Resets R0=R1=1. 

|n  142-   43 32  

|¥  Run mode. 
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Labels used: E and 8. 

Registers used: no additional registers. 

Matrices used: A (from previous program) and E (eigenvalues). 

To use the combined eigenvalue, eigenvalue storage, and eigenvector programs for an A 

matrix up to 3×3: 

1. Execute the eigenvalue program as described earlier. 

2. Press E to store the eigenvalues. 

3. Enter again the elements of the original matrix into A. 

4. Recall the desired eigenvalue from matrix E using l E. 

5. Execute the eigenvector program as described above. 

6. Repeat steps 4 and 5 for each eigenvalue. 

 

Optimization 

Optimization describes a class of problems in which the object is to find the minimum or 

maximum value of a specified function. Often, the interest is focused on the behavior of the 

function in a particular region. 

The following program uses the method of steepest descent to determine local minimums or 

maximums for a real-valued function of two or more variables. This method is an iterative 

procedure that uses the gradient of the function to determine successive sample points. Four 

input parameters control the sampling plan. 

For the function 

f (x) = f (x1,x2, … ,xn) 

the gradient of f,  f, is defined by 



























n

2

1

)(

xf

xf

xf

f


x  

The critical points of f(x) are the solutions to  f (x) = 0. A critical point may be a local 

minimum, a local maximum, or a point that is neither. 

The gradient of f(x) evaluated at a point x gives the direction of steepest ascent—that is, the 

way in which x should be changed in order to cause the most rapid increase in f(x). The 

negative gradient gives the direction of steepest descent. The direction vector is 
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








maximum.afindingfor)(

minimumafindingfor)(

x

x
s

f

f
 

Once the direction is determined from the gradient, the program looks for the optimum 

distance to move from xj in the direction indicated by sj—the distance that gives the greatest 

improvement in f(x) toward a minimum or maximum 

To do this, the program finds the optimum value tj by calculating the slope of the function 

gj(t) = f(xj + tsj) 

at increasing values of t until the slope changes sign. This procedure is called "bounding 

search" since the program tries to bound the desired value tj within an interval. When the 

program finds a change of sign, it then reduces the interval by halving it j + 1 times to find 

the best t value near t=0. This procedure is called "interval reduction"—it yields more 

accurate values for tj as xj converges toward the desired solution. (These two processes are 

collectively called "line search.") The new value of x is then 

xj+1 = xj + tjsj. 

The program uses four parameters that define how it proceeds toward the desired solution. 

Although no method of line search can guarantee success for finding an optimum value of t, 

the first two parameters give you considerable flexibility in specifying how the program 

samples t. 

d  Determines the initial step u1 for the bounding search. The first value of t tried is 

F
jj

d
u

s)1(
1


  . 

This corresponds to a distance of 

 
1

1



j

d
u

Fjjj xsx  , 

which shows that d and the iteration number define how close to the last x value the 

program starts the bounding search. 

a Determines the values u2, u3, … of subsequent steps in the bounding search. These 

values of t are defined by 

ui+1 = aui 

Essentially, a is an expansion factor that is normally greater than 1, producing an 

increasing sequence of values of t. 

e Determines the acceptable tolerance on the size of the gradient. The iterative process 

stops when 

||f(xj)||F  e. 
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N  Determines the maximum number of iterations that the program will attempt in each 

of two procedures: the bounding search and the overall optimization procedure. That 

is, the program halts if the bounding search finds no change of sign within N 

iterations. Also, the program halts if the norm of the gradient is still too large at xN. 

Each of these situations results in an Error 1 display. (They can be distinguished by 

pressing −.) You can continue running the program if you desire. 

The program requires that you enter a subroutine that evaluates f(x) and f(x). This 

subroutine must be labeled "E", use the vector x stored in matrix A, return the gradient in 

matrix E, and place f(x) in the X-register. 

In addition, the program requires an initial estimate x0 of the desired critical point. This 

vector must be stored in matrix A. 

The program has the following characteristics: 

 The program searches for any point x where f(x) = 0. Nothing prevents convergence 

to a saddle-point, for example. In general, you must use other means to determine the 

nature of the critical point that is found. (Also, this program does not address the 

problem of locating a maximum or minimum on the boundary of the domain of f(x).) 

 You may adjust the convergence parameters after starting the program. In many cases, 

this dramatically reduces the time necessary for convergence. Here are some helpful 

hints: 

 If the program consistently enters the interval reduction phase after sampling only 

one point u1, the initial step size may be too large. Try reducing the magnitude of d 

to produce a more efficient search. 

 If the results of the bounding search look promising (that is, the slopes are 

decreasing in magnitude), but then begin to increase in magnitude, the search may 

have skipped past a critical point. Try reducing a to produce more close sampling; 

you may have to increase N also. 

 You can replace ¦ at line 102 with © or perhaps delete it entirely if you have 

no interest in the intermediate results. 

 For a function of n variables, the program requires 4n+1 registers devoted to matrices. 

Keystrokes Display  

|¥  Program mode. 

´CLEARM  000-  

´b8  001-42,21, 8 Routine to swap A and C using 

E. 

l>C 002-45,16,13  

O>E  003-44,16,15  

l>A  004-45,16,11  

O>C  005-44,16,13  

l>E  006-45,16,15  

O>A  007-44,16,11  
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Keystrokes Display  

|n  008-   43 32  

´b7  009-42,21, 7 Line search routine. 

l4  010-   45  4  

l÷6  011-45,10, 6  

O8  012-   44  8 Stores d/(j+1) in R8. 

GE  013-   32 15  

l>E  014-45,16,15  

O>Á  015-44,16,14  

l>Á  016-45,16,14  

|?0  017-43, 6, 0  

”  018-      16 For minimum, changes sign of 

gradient. 

´>8  019-42,16, 8 Calculates ||f(x)||. 

|~  020-   43 20  

|n  021-   43 32 Exits if ||f(x)|| = 0. 

⁄  022-      15  

l*8  023-45,20, 8 Calculates u1. 

O.1  024-   44 .1 Stores u1 in R1. 

0  025-       0  

O.0  026-   44 .0  

l5  027-   45  5  

O7  028-   44  7 Stores counter in R7. 

´b6  029-42,21, 6 Bounding search begins. 

l.1  030-   45 .1  

G3  031-   32  3  

´©  032-   42 31 Shows slope. 

|?0  033-43, 6, 0  

”  034-      16  

|T4  035-43,30, 4 Tests for slope change. 

t5  036-   22  5 Branch to interval reduction. 

G8  037-   32  8 Restores original matrix to A. 

l.1  038-   45 .1  

O.0  039-   44 .0 Stores ui in R.0. 

l2  040-   45  2  

O*.1  041-44,20,.1 Stores ui+1 in R.1. 

´s7  042-42, 5, 7 Decrements counter. 

t6  043-   22  6 Branch to continue. 

l>A  044-45,16,11  

|a  045-   43 16 Displays Error 1 with A in X-
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Keystrokes Display  

register. 

t6  046-   22  6 Branch for continuation. 

´b5  047-42,21, 5 Interval reduction routine. 

l6  048-   45  6  

O7  049-   44  7 Stores j+1 in R7. 

´b4  050-42,21, 4  

G8  051-   32  8 Restores original matrix to A. 

l.0  052-   45 .0  

l+.1  053-45,40,.1  

2  054-       2  

÷  055-      10  

O8  056-   44  8 Calculates midpoint of interval. 

G3  057-   32  3 Calculates slope. 

|?0  058-43, 6, 0  

”  059-      16 Changes sign for minimum. 

1  060-       1  

1  061-       1  

OV  062-   44 25 Stores interval register number. 

)  063-      33  

|T1  064-43,30, 1  

´eV  065-42, 5,25  

l8  066-   45  8  

O%  067-   44 24 Stores midpoint in R.0 or R.1. 

´e7  068-42, 5, 7 Decrements counter. 

t4  069-   22  4  

|n  070-   43 32 Exits when counter is zero. 

´b3  071-42,21, 3 Routine to calculate slope. 

l>Á  072-45,16,14  

´<C  073-42,26,13  

*  074-      20  

l>A  075-45,16,11  

+  076-      40 Calculates point xj + tsj. 

G8  077-   32  8 Swaps original matrix and new 

point. 

GE  078-   32 15 Calculates f(x) in E. 

O9  079-   44  9 Stores f(x) in R9. 

l>E  080-45,16,15  

l>Á  081-45,16,14  

´<B  082-42,26,12  
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Keystrokes Display  

´>5  083-42,16, 5 Calculates slope as (f)
T
s. 

1  084-       1  

v  085-      36  

l|B  086-45,43,12  

|n  087-   43 32 Exits with slope in X-register. 

´bA  088-42,21,11 Main routine. 

0  089-       0  

O6  090-   44  6  

´b2  091-42,21, 2  

1  092-       1  

O+6  093-44,40, 6 Stores j + 1 in R6. 

´i3  094-42, 8, 3  

G7  095-   32  7 Branches to line search. 

l6  096-   45  6  

´•0  097-42, 7, 0  

´©  098-   42 31 Pauses with j + 1 in display. 

´>1  099-42,16, 1 Sets R0=R1=1 for viewing. 

´i3  100-42, 8, 3  

l9  101-   45  9 Recalls f(x) 

¦  102-      31 Stops program. 

l3  103-   45  3 Recall e. 

l>E  104-45,16,15  

´>8  105-42,16, 8 Calculates ||f(x)||. 

|£  106-   43 10 Tests ||f(x)|| ≤ e. 

tB  107-   22 12 Branch for showing solution. 

´©  108-   42 31 Shows ||f(x)||. 

l5  109-   45  5  

l6  110-   45  6  

|T8  111-43,30, 8 Tests (j + 1) < N. 

t2  112-   22  2 Branch to continue iterating. 

l>C  113-45,16,13  

|a  114-   43 16 Displays Error 1 with C in X-

register. 

t2  115-   22  2 Branch for continuing. 

´bB  116-42,21,12 Routine to show solution. 

|F9  117-43, 4, 9 Sets blink flag. 

¦  118-      31 Stops with ||f(xj + 1)|| in display. 

tB  119-   22 12 Looping branch. 
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Labels used: A, B, and 2 through 8. 

Registers used: R2 through R9, R.0, R.1, and Index register. 

Matrices used: A, B, C, D, and E. 

Your subroutine, labeled "E", may use any labels and registers not listed above, plus the 

Index register, matrix B, and matrix E (which should contain your calculated gradient). 

To use the program: 

1. Enter your subroutine into program memory. 

2. Press 11 ´m% to reserve registers R0 through R.1 (Your subroutine may 

require additional registers.) 

3. Set flag 0 if you're seeking a local minimum; clear flag 0 if you're seeking a local 

maximum. 

4. Dimension matrix A to n×1, where n is the number of variables. 

5. Store the required data in memory: 

 Store the I  nitial estimate x0 in matrix A. 

 Store a in R2. 

 Store e in R3. 

 Store d in R4. 

 Store N in R5. 

6. Press GA to view the slopes during the iteration procedure. 

 View the iteration number and the value of f(x). 

 If  Error 1 appears, press − to clear the message. Then either go back to step and 

possibly revise parameters as needed, or press −¦ to provide one more 

bounding search iteration or one more optimization iteration. (If the descriptor of 

matrix A was in the display when the error occurred, the number of bounding 

search iterations exceeded N; if the descriptor of matrix C was in the display, the 

number of optimization iterations exceeded N.) 

7. Press ¦ to view the norm of the gradient and to start the next iteration. 

 If the display flashes the norm of the gradient, press − and then recall the values 

of x in matrix A. 

 If the iteration number and value of f(x) are displayed, repeat this step as often as 

necessary to obtain the solution or go back to step 5 and revise parameters as 

needed. 
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Example: Use the optimization program to find the dimensions of the box of largest volume 

with the sum of the length and girth (perimeter of cross section) equaling 100 centimeters. 

For this problem 

l + (2h + 2w) = 100 

v = whl 

v(w,h) = wh(100－2h－2w) 

= 100wh － 2wh
2
 － 2hw

2
 















)250(2

)250(2
),(

hww

whh
hwv . 

The solution should satisfy w + h < 50, w > 0, and h > 0. 

First enter a subroutine to calculate the gradient and the volume. 

Keystrokes Display  

´bE  120-42,21,15 Function subroutine. 

lmA  121-45,23,11  

´mE  122-42,23,15  

´>1  123-42,16, 1  

´UlA 
´U 

 124u   45 11  

O.2  125-   44 .2 Stores w in R.2. 

OE  126-   44 15 Stores w in e2. 

lA  127-   45 11  

O.3  128-   44 .3 Stores h in R.3. 

´>1  129-42,16, 1  

OE  130-   44 15 Stores h in e1. 

+  131-      40  

5  132-       5  

0  133-       0  

-  134-      30  

”  135-      16  

2  136-       2  

*  137-      20 Calculates l = 2(50 − h − w). 

´X.2  138-42, 4,.2 Stores l in R.2. 

O*.3  139-44,20,.3 Stores wh in R.3. 

l.2  140-   45 .2  

l>E  141-45,16,15  

´<E  142-42,26,15  

*  143-      20  
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Keystrokes Display  

l.3  144-   45 .3  

l+.3  145-45,40,.3  

-  146-      30 Replaces ei with lei − 2wh, the 

gradient elements. 

l.2  147-   45 .2  

l*.3  148-45,20,.3 Calculates lwh. 

|n  149-   43 32  

Now enter the necessary information and run the program. 

Keystrokes Display  

|¥  Run mode. 

13´m%  13.0000 Reserves R0 through R.3. 

|"0  13.0000 Finds local maximum. 

´U  13.0000 Activates User mode. 

´>1  13.0000  

2v1  1 Enters dimensions for matrix A. 

´mA  1.0000 Dimensions A to 2 × 1. 

15OA  15.0000  

OA  15.0000 Stores initial estimate: 

l = w = 15. 

3O2  3.0000 Stores a = 3. 

0.1O3  0.1000 Stores e = 0.1 . 

0.05O4  0.0500 Stores d = 0.05 . 

4O5  4.0000 Stores N = 4. 

A  4.415     04 Slope at u1. 

  4.243     04 Slope at u2. 

  3.718     04 Slope at u3. 

  2.045     04 Slope at u4. 

  Error 1  

−  A     2    1 Bounding search failed. 

Since the results so far look promising (the derivatives are decreasing in magnitude), allow 

five additional samples in this bounding search and set N = 8 for all subsequent iterations. 

Keystrokes Display  

5O7  5.000     00 Sets counter to 5. 

8O5  8.000     00 Sets N to 8. 

¦ -3.849     04 Slope at u5 (sign change). 

  1. j + 1. 
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Keystrokes Display  

  9.253     03 Volume at this iteration. 

¦  3.480     01 Gradient. 

  1.121     03 Slope at u1. 

  9.431     02 Slope at u2. 

  4.126     02 Slope at u3. 

 -1.139     03 Slope at u4 (sign change). 

  2. j + 1. 

  9.259     03 Volume at this iteration. 

¦  5.479    -01 Gradient. 

 -6.127    -01 Slope at u1 (sign change). 

  3. j + 1. 

  9.259     03 Volume at this iteration. 

¦  7.726    -02 Gradient less than e. 

−  7.726    -02 Stops blinking. 

´•4  0.0773  

lA  16.6661 Recalls h form a1. 

lA  16.6661 Recalls w form a2. 

´U  16.6661  

´>0  16.6661 Deallocates matrix memory. 

The desired box size is 16.6661 × 16.6661 × 33.3355 centimeters. (An alternate method of 

solving this problem would be to solve the linear system represented by v(w, h) = 0.) 
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Appendix: 
Accuracy of Numerical Calculations 

Misconceptions About Errors 

Error is not sin, nor is it always a mistake. Numerical error is merely the difference between 

what you wish to calculate and what you get. The difference matters only if it is too big. 

Usually it is negligible; but sometimes error is distressingly big, hard to explain, and harder 

to correct. This appendix focuses on errors, especially those that might be large—however 

rare. Here are some examples. 

Example 1: A Broken Calculator. Since xx 2)(  whenever x ≥ 0, we expect also 

2
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2
2
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
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
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
  xxf  

 

 

should equal x too. 

A program of 100 steps can evaluate the expression f(x) for any positive x. When x = 10 the 

HP-15C calculates 1 instead. The error 10 − 1 = 9 appears enormous considering that only 

100 arithmetic operations were performed, each one presumably correct to 10 digits. What 

the program actually delivers instead of f(x) = x turns out to be 










,10for0

       1for1
)(

x

x
xf  

which seems very wrong. Should this calculator be repaired? 

Example 2: Many Pennies. A corporation retains Susan as a scientific and engineering 

consultant at a fee of one penny per second for her thoughts, paid every second of every day 

for a year. Rather than distract her with the sounds of pennies dropping, the corporation 

proposes to deposit them for her into a bank account in which interest accrues at the rate of 

11¼ percent per annum compounded every second. At year's end these pennies will 

accumulate to a sum 

 
ni

ni
n

11
)payment(total


  

50 

roots 

50 

squares 
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where payment = $0.01 = one penny per second, 

i = 0.1125 = 11.25 percent per annum interest rate, 

n = 60×60×24×365 = number of seconds in a year. 

Using her HP-15C, Susan reckons that the total will be $376,877.67. But at year's end the 

bank account is found to hold $333,783.35. Is Susan entitled to the $43,094.32 difference? 

In both examples the discrepancies are caused by rounding errors that could have been 

avoided. This appendix explains how. 

The war against error begins with a salvo against wishful thinking, which might confuse 

what we want with what we get. To avoid confusion, the true and calculated results must be 

given different names even though their difference may be so small that the distinction seems 

pedantic. 

Example 3: Pi. The constant π = 3.1415926535897932384626433…. 

Pressing the $ key on the HP-15C delivers a different value 

$ = 3.141592654 

which agrees with π to 10 significant digits. But $≠ π, so we should not be surprised 

when, in Radians mode, the calculator doesn't produce sin $ = 0. 

Suppose we wish to calculate x but we get X instead. (This convention is used throughout this 

appendix.) The error is x - X. The absolute error is |x – X|. The relative error is usually 

reckoned (x - X)/x for x ≠ 0. 

Example 4: A Bridge Too Short. The lengths in meters of three sections of a cantilever 

bridge are designed to be 

x=333.76       y=195.07         z=333.76. 

The measured lengths turn out to be respectively 

X=333.69       Y=195.00         Z=333.72. 

The discrepancy in total length is 

d = (x + y + z) - (X + Y + Z) = 862.59 - 862.41 = 0.18. 

Ed, the engineer, compares the discrepancy d with the total length (x + y + z) and considers 

the relative discrepancy 

d/( x + y + z) = 0.0002 = 2 parts in 10,000 

to be tolerably small. But Rhonda, the riveter, considers the absolute discrepancy |d| = 0.18 

meters (about 7 inches) much too large for her liking; some powerful stretching will be 
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needed to line up the bridge girders before she can rivet them together. Both see the same 

discrepancy d, but what looks negligible to one person can seem awfully big to another. 

Whether large or small, errors must have sources which, if understood, usually permit us to 

compensate for the errors or to circumvent them altogether. To understand the distortions in 

the girders of a bridge, we should learn about structural engineering and the theory of 

elasticity. To understand the errors introduced by the very act of computation, we should 

learn how our calculating instruments work and what are their limitations. These are details 

most of us want not to know, especially since a well-designed calculator's rounding errors are 

always nearly minimal and therefore appear insignificant when they are introduced. But 

when on rare occasions they conspire to send a computation awry, they must be reclassified 

as "significant" after all. 

Example 1 Explained. Here f(x) = s(r(x)), where 












50

2
1

)( xxxr   

 

 

and 

.
)(

))))(((()(
50

22222 rrrs    

 

 

The exponents are ½
50

 = 8.8818×10
-16

 and 2
50

 = 1.1259×10
15

. Now, x must lie between 10
-99

 

and 9.999 ... × 10
99

 since no positive numbers outside that range can be keyed into the 

calculator. Since r is an increasing function, r(x) lies between 

r(10
-99

) = 0.9999999999997975… 

and 

r(10
100

) = 1.0000000000002045… . 

This suggests that R(x), the calculated value of r(x), would be 1 for all valid calculator 

arguments x. In fact, because of roundoff, 










.9910999999999.91for000000000.1

10for9999999999.0
)(

x

x
xR  

If 0 < x < 1, then x ≤ 0.9999999999 in a 10-digit calculator. We would then rightly expect 

that 9999999999.0x , which is 0.999999999949999999998..., which rounds to 

0.9999999999 again. Therefore, if ¤ is pressed arbitrarily often starting with x < 1, the 

result cannot exceed 0.9999999999. This explains why we obtain R(x) = 0.9999999999  for   

50 

roots 

50 

squares 
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0 < x < 1 above. When R(x) is squared 50 times to produce F(x) = S(R(x)), the result is clearly 

1 for  x ≥ 1, but why is F(x) = 0 for 0 ≤ x < 1? When x <1, 

     .488981014.6

502
101019999999999.0 





  sxRs  

This value is so small that the calculated value F(x) = S(R(x)) underflows to 0. So the        

HP-15C isn't broken; it is doing the best that can be done with 10 significant digits of 

precision and 2 exponent digits. 

We have explained example 1 using no more information about the HP-15C than that it 

performs each arithmetic operation ¤ and x and fully as accurately as is possible within 

the limitations of 10 significant digits and 2 exponent digits. The rest of the information we 

needed was mathematical knowledge about the functions f, r, and s. For instance, the value 

r(10
100

) above was evaluated as 
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by using the series .3
6

12
2

11)exp(  zzzz  

Similarly, the binomial theorem was used for 

 

    .
21010

2
1

10

10
8

110
2

11

1019999999999.0









 

These mathematical facts lie well beyond the kind of knowledge that might have been 

considered adequate to cope with a calculation containing only a handful of multiplications 

and square roots. In this respect, example 1 illustrates an unhappy truism: Errors make 

computation very much harder to analyze. That is why a well-designed calculator, like the 

HP-15C, will introduce errors of its own as sparingly as is possible at a tolerable cost. Much 

more error than that would turn an already difficult task into something hopeless. 

Example 1 should lay two common misconceptions to rest: 

 Rounding errors can overwhelm a computation only if vast numbers of them 

accumulate. 

 A few rounding errors can overwhelm a computation only if accompanied by massive 

cancellation. 
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Regarding the first misconception, example 1 would behave in the same perverse way if it 

suffered only one rounding error, the one that produces R(x) = 1 or 0.9999999999, in error by 

less than one unit in its last (10th) significant digit. 

Regarding the second misconception, cancellation is what happens when two nearly equal 

numbers are subtracted. For example, calculating 

2/)cos1()( xxxc   

in Radians mode for small values of x is hazardous because of cancellation. Using x = 

1.2×10
-5

 and rounding results to 10 digits 

cos x = 0.9999999999 

and 

1 - cos x = 0.0000000001 

with cancellation leaving maybe one significant digit in the numerator. Also 

x
2
 = 1.44×10

-10
. 

Then 

C(x) = 0.6944. 

This calculated value is wrong because 
2

1)(0  xc for all  x≠ 0. To avoid numerical 

cancellation, exploit the trigonometric identity  2sin21cos 2 xx   to cancel the 1 exactly and 

obtain a better formula 

 
.

sin

2

1
)(

2

2

2










x

x
xc  

When this latter expression is evaluated (in Radians mode) at x = 1.2×10
-5

, the computed 

result C(x) = 0.5 is correct to 10 significant digits. This example, while explaining the 

meaning of the word "cancellation," suggests that it is always a bad thing. That is another 

misconception to be dispatched later. For the present, recall that example 1 contains no 

subtraction, therefore no cancellation, and is still devastated by its rounding error. In this 

respect example 1 is counterintuitive, a little bit scary. Nowhere in it can we find one or two 

arithmetic operations to blame for the catastrophe; no small rearrangement will set 

everything right as happened for c(x). Alas, example 1 is not an isolated example. As 

computers and calculators grow in power, so do instances of insidious error growth become 

more common. 

To help you recognize error growth and cope with it is the ultimate goal of this appendix. We 

shall start with the simplest kinds of errors and work our way up gradually to the subtle 

errors that can afflict the sophisticated computations possible on the HP-15C. 
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A Hierarchy of Errors 

Some errors are easier to explain and to tolerate than others. Therefore, the functions 

delivered by single keystrokes on the HP-15C have been categorized, for the purposes of 

easier exposition, according to how difficult their errors are to estimate. The estimates should 

be regarded as goals set by the calculator's designers rather than as specifications that 

guarantee some stated level of accuracy. On the other hand, the designers believe they can 

prove mathematically that their accuracy goals have been achieved, and extensive testing has 

produced no indication so far that they might be mistaken. 

Level 0: No Error 

Functions which should map small integers (smaller than 10
10

) to small integers do so 

exactly, without error, as you might expect. 

Examples: 

24                -2
3 

= -8        3
20

 = 3,486,784,401 

 log(10
9
) = 9       6! = 720 

 cos
-1

(0)  = 90 (in Degrees mode) 

ABS(4,686,660 + 4,684,659 i) = 6,625,109 (in Complex mode) 

Also exact for real arguments are a, q, ‘, &,  and comparisons (such as 

£). But the matrix functions *, ÷, ⁄, >6, and >9 (determinant) 

are exceptions (refer to page 160). 

Level ∞: Overflow/Underflow 

Results which would lie closer to zero than 10
-99

 underflow quietly to zero. Any result that 

would lie beyond the overflow thresholds ±9.999999999×10
99

 is replaced by the nearest 

threshold, and then flag 9 is set and the display blinks. (Pressing == or "9 or − 

will clear flag 9 and stop the blinking.) Most functions that result in more than one 

component can tolerate overflow/underflow in one component without contaminating the 

other; examples are ;, :, complex arithmetic, and most matrix operations. The 

exceptions are matrix inversion (⁄ and ÷), > 9 (determinant), and L. 

Level 1: Correctly Rounded, or Nearly So 

Operations that deliver "correctly rounded" results whose error cannot exceed ½ unit in their 

last (10th) significant digit include the real algebraic operations +, -, *, ÷, x, 

¤, ⁄, and k, the complex and matrix operations + and -, matrix by scalar 

operations *and ÷(excluding division by a matrix), and h. These results are the 

best that 10 significant digits can represent, as are familiar constants $, 1', 2N, 

10N, 1r, and many more. Operations that can suffer a slightly larger error, but still 
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significantly smaller than one unit in the 10th significant digit of the result, include ∆, 
À,r,d,p,and c; N,o, @,P]for real arguments; 

:, ,, {, /,H[, H\and H]for real and complex 

arguments; a, ¤, and⁄for complex arguments; matrix norms >7, >8; 

and finally [, \, and ] for real arguments in Degrees and Grads modes (but not 

in Radians mode − refer to Level 2, page 154) 

A function that grows to ∞ or decays to 0 exponentially fast as its argument approaches ± ∞ 

may suffer an error larger than one unit in its 10th significant digit, but only if its magnitude 

is smaller than 10
-20

 or larger than 10
20

; and though the relative error gets worse as the result 

gets more extreme (small or large), the error stays below three units in the last (10th) 

significant digit. The reason for this error is explained later. Functions so affected, are ', 

Y, ! (for non-integer x), P[, and P\ for real arguments. The worst 

case known is 3
201

, which calculated as 7.968419664×10
95

. The last digit 4 should be 6 

instead, as is the case for 7.29
33.5

, calculated as 7.968419666×10
28

. 

The foregoing statements about errors can be summarized for all functions in Level 1 in a 

way that will prove convenient later: 

Attempts to calculate a function f in Level 1 produce instead a computed value F = (1 +ε) f  

whose relative errorε, though unknown, is very small: 














.1Levelinfunctionsotherallfor101

roundedcorrectlyif105
9

10

F

F
  

This simple characterization of all the functions in Level l fails to convey many other 

important properties they all possess, properties like 

 Exact integer values: mentioned in Level 0. 

 Sign symmetry: sinh(−x) = −sinh(x),  cosh(−x) = cosh(x), ln(1/x) = −ln(x) (if l/x is 

computed exactly). 

 Monotonicity: if f(x) ≥ f(y), then computed F(x) ≥ F(y). 

These additional properties have powerful implications; for instance, TAN(20°) = 

TAN(200°) = TAN(2,000°) = ... = TAN(2× 10
99 

°) = 0.3639702343 correctly. But the simple 

characterization conveys most of what is worth knowing, and that can be worth money. 

 

Example 2 Explained. Susan tried to calculate 

 
ni

ni
n

11
paymenttotal


  

where 

 payment = $0.01, 

 i = 0.1125, and 

 n = 60 × 60 × 24 × 365 = 31,536,000. 



152 Appendix: Accuracy of Numerical Calculations 

152 

She calculated $376,877.67 on her HP-15C, but the bank's total was $333,783.35, and this 

latter total agrees with the results calculated on good, modern financial calculators like the 

HP-12C, HP-37E, HP-38E/38C, and HP-92. Where did Susan's calculation go awry? No 

severe cancellation, no vast accumulation of errors; just one rounding error that grew 

insidiously caused the damage: 

i/n =   0.000000003567351598 

1 + i/n =   1.000000004 

when rounded to 10 significant digits. There is the rounding error that hurts. Subsequently 

attempting to calculate (1+i/n)
n
, Susan must get instead (1.000000004)

31,536,000
 = 

1.134445516, which is wrong in its second decimal place. 

How can the correct value be calculated? Only by not throwing away so many digits of i/n. 

Observe that 

 





 


nin

enni
1ln

1 , 

so we might try to calculate the logarithm in some way that does not discard those precious 

digits. An easy way to do so on the HP-15C does exist. 

To calculate λ(x) = ln(1+x) accurately for all x>−1, even if |x| is very small: 

1. Calculate u = 1 + x  rounded. 

2. Then 










.11)ln(

1
)(

uifuxu

uifx
x  

The following program calculates λ(x) = ln(1+x) 

 

Keystrokes Display  

|¥   

´CLEARM  000-  

´bA  001-42,21,11 Assumes x is in X-register. 

v  002-      36  

v  003-      36  

“  004-      26 Places 1 in X-register. 

+  005-      40 Calculates u = 1 + x rounded. 

|N  006-   43 12 Calculates ln(u) (zero for u = 1). 

® 007-      34 Restores x to X-register. 

|K  008-   43 36 Recalls u. 

“  009-      26 Places 1 in X-register. 

|T6  010-43,30, 6 Tests u≠1. 
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Keystrokes Display  

-  011-      30 Calculates u − 1 when u≠1. 

÷  012-      10 Calculates x/(u − 1) or 1/1. 

*  013-      20 Calculates λ(x). 

|n  014-   43 32  

|¥   

The calculated value of u, correctly rounded by the HP-15C, is u=(1+ε)(1+x), where |ε| 

<5×10
-10

. If u=1, then 

|x| = |1/(1+ε)-1| ≤ 5×10
-10

 

too, in which case the Taylor series λ(x) = x (1 − ½ x + ⅓ x
2
 − ... ) tells us that the correctly 

rounded value of λ(x) must be just x. Otherwise, we shall calculate x λ (u − 1)/(u − 1) fairly 

accurately instead of λ (x). But λ(x)/x = 1 − ½ x + ⅓ x
2
 −... varies very slowly, so slowly that 

the absolute error λ (x)/ x − λ (u − 1)/(u − 1) is no worse than the absolute error                       

x - (u − 1) = −ε(1+ x), and if x≤1, this error is negligible relative to λ (x)/x. When x> 1, then  

u − 1 is so nearly x that the error is negligible again; λ (x) is correct to nine significant digits. 

As usual in error analyses, the explanation is far longer than the simple procedure being 

explained and obscures an important fact: the errors in ln(u) and u − 1 were ignored during 

the explanation because we knew they would be negligible. This knowledge, and hence the 

simple procedure, is invalid on some other calculators and big computers! Machines do exist 

which calculate ln(u) and/or 1 − u with small absolute error, but large relative error when u is 

near 1; on those machines the foregoing calculations must be wrong or much more 

complicated, often both. (Refer to the discussion under Level 2 for more about this.) 

Back to Susan's sum. By using the foregoing simple procedure to calculate                             

λ (i/n) = ln(1 + i/n) = 3.567351591× 10
-9

, she obtains a better value: 

  119072257.11 





 nin

enni


 

from which the correct total follows. 

To understand the error in 3
201

, note that this is calculated as e
201ln(3)

 = e
220.821...

. To keep the 

final relative error below one unit in the 10th significant digit, 201 ln(3) would have to be 

calculated with an absolute error rather smaller than 10
-10

, which would entail carrying at 

least 14 significant digits for that intermediate value. The calculator does carry 13 significant 

digits for certain intermediate calculations of its own, but a 14th digit would cost more than 

it's worth. 

Level 1C: Complex Level 1 

Most complex arithmetic functions cannot guarantee 9 or 10 correct significant digits in each 

of a result's real and imaginary parts separately, although the result will conform to the 

summary statement about functions in Level 1 provided f, F, and ε are interpreted as complex 
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numbers. In other words, every complex function f in Level 1C will produce a calculated 

complex value F = (1 + ε) f whose small complex relative error ε must satisfy |ε| < 10
-9

. The 

complex functions in Level lC are *,÷,x,N,o,,,{,/, 
H[, H\, and H]. Therefore, a function like λ(z) = ln(1+z) can be 

calculated accurately for all z by the same program given above with the same explanation. 

To understand why a complex result's real and imaginary parts might not individually be 

correct to 9 or 10 significant digits, consider *, for example: (a + ib) × (c + id) = (ac − bd) 

+ i(ad + bc) ideally. Try this with a = c = 9.999999998, b = 9.999999999, and d = 

9.999999997; the exact value of the product's real part (ac − bd) should then be 

(9.999999998)
2 − (9.999999999)(9.999999997) 

             = 99.999999980000000004 − 99.999999980000000003 

            = 10
-18 

which requires that at least 20 significant digits be carried during the intermediate 

calculation. The HP-15C carries 13 significant digits for internal intermediate results, and 

therefore obtains 0 instead of 10
-18

 for the real part, but this error is negligible compared to 

the imaginary part 199.9999999. 

Level 2: Correctly Rounded for Possibly Perturbed Input 

Trigonometric Functions of Real Radian Angles 

Recall example 3, which noted that the calculator's $ key delivers an approximation to π 

correct to 10 significant digits but still slightly different from π, so 0 = sin(π) ≠ sin ($) for 

which the calculator delivers 

[($) = −4.100000000×10
-10

. 

This computed value is not quite the same as the true value 

sin($) = −4.10206761537356…×10
-10

. 

Whether the discrepancy looks small (absolute error less than 2.1 × 10
-13

) or relatively large 

(wrong in the fourth significant digit) for a 10-significant-digit calculator, the discrepancy 

deserves to be understood because it foreshadows other errors that look, at first sight, much 

more serious. 

Consider 

10
14 

π = 314159265358979.3238462643… 

with sin(10
14

 π) = 0 and 

10
14

 × $ = 314159265400000 
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with [ (10
14

 $) = 0.7990550814, although the true 

sin (10
14

 $) = −0.78387… 

The wrong sign is an error too serious to ignore; it seems to suggest a defect in the calculator. 

To understand the error in trigonometric functions we must pay attention to small differences 

among π and two approximations to π: 

true          π = 3.1415926535897932384626433 ...  

key        $ = 3.141592654                         (matches π to 10 digits) 

internal     p = 3.141592653590 (matches π to 13 digits) 

Then all is explained by the following formula for the calculated value:  

[(x) = sin(x π / p) to within ±0.6 units in its last (10th) significant digit. 

More generally, if trig(x) is any of the functions sin(x), cos(x), or tan(x), evaluated in real 

Radians mode, the HP-15C produces 

Æ(x) = trig(x π / p) 

to within ±0.6 units in its 10th significant digit. 

This formula has important practical implications: 

 Since π / p = 1 − 2.0676... × 10
-13

/ p = 0.9999999999999342 ..., the value produced by 

Æ (x) differs from trig(x) by no more than can be attributed to two perturbations: 

one in the 10th significant digit of the output trig(x), and one in the 13th significant 

digit of the input x. 

If x has been calculated and rounded to 10 significant digits, the error inherited in its 

10th significant digit is probably orders of magnitude bigger than Æ's second 

perturbation in x's 13th significant digit, so this second perturbation can be ignored 

unless x is regarded as known or calculated exactly. 

 Every trigonometric identity that does not explicitly involve π is satisfied to within 

roundoff in the 10th significant digit of the calculated values in the identity. For 

instance, 

sin
2
(x) + cos

2
(x) = 1, so ([(x))

2
 + (\(x))

2
=1 

sin(x)/cos(x) = tan(x), so [(x) / \(x) = ](x) 

with each calculated result correct to nine significant digits for all x. Note that \(x) 

vanishes for no value of x representable exactly with just 10 significant digits. And if 2x 

can be calculated exactly given x, 

sin(2x) = 2 sin(x)cos(x), so [(2x) = 2[(x) \(x) 

to nine significant digits. Try the last identity for x = 52174 radians on the HP-15C: 
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              [(2x) = −0.00001100815000 

2[(x) \(x) = −0.00001100815000. 

Note the close agreement even though for this x, sin(2x) = 2sin(x)cos(x) = 

−0.0000110150176 ... disagrees with [(2x) in its fourth significant digit. The same 

identities are satisfied by Æ(x) values as by trig(x) values even though Æ(x) and 

trig(x) may disagree. 

 Despite the two kinds of errors in Æ, its computed values preserve familiar 

relationships wherever possible: 

 Sign symmetry:     \(−x)  =  \(x) 

     [(−x)  =  − [(x) 

 Monotonicity:   if trig(x) ≥ trig(y), 

     then Æ(x) ≥ Æ(y) 

     (provided |x − y| < 3) 

 Limiting inequalities:  [(x) / x ≤ 1 for all x ≠ 0 

       ](x) / x ≥ 1 for 0 < |x| < π/2 

     −1 ≤ [(x) and \(x) ≤ 1 

     for all x 

What do these properties imply for engineering calculations? You don't have to remember 

them! 

In general, engineering calculations will not be affected by the difference between p and π, 

because the consequences of that difference in the formula defining Æ(x) above are 

swamped by the difference between $ and π and by ordinary unavoidable roundoff in x or 

in trig(x). For engineering purposes, the ratio π / p = 0.9999999999999342... could be 

replaced by 1 without visible effect upon the behavior of Æ. 

Example 5: Lunar Phases. If the distance between our Earth and its moon were known 

accurately, we could calculate the phase difference between radar signals transmitted to and 

reflected from the moon. In this calculation the phase shift introduced by p ≠ π has less effect 

than changing the distance between Earth and moon by as little as the thickness of this page. 

Moreover, the calculation of the strength, direction, and rate of change of radiated signals 

near the moon or reflected signals near the Earth, calculations that depend upon the 

trigonometric identities' continuing validity, are unaffected by the fact that p ≠ π; they rely 

instead upon the fact that p is a constant (independent of x in the formula for Æ(x)), and 

that constant is very near π. 

The HP·15C's keyboard functions that involve p are the trigonometric functions [, 

\, and ]for real and complex arguments; hyperbolic functions P[, 

P\, and P] for complex arguments; complex operations ', @, and 

Y; and real and complex ;. 
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It all seems like much ado about very little. After a blizzard of formulas and examples, we 

conclude that the error caused by p ≠ π is negligible for engineering purposes, so we need not 

have bothered to know about it. That is the burden that conscientious error analysts must 

bear; if they merely took for granted that small errors are negligible, they might be wrong. 

Backward Error Analysis 

Until the late 1950's, most computer experts inclined to paranoia in their assessments of the 

damage done to numerical computations by rounding errors. To justify their paranoia, they 

could cite published error analyses like the one from which a famous scientist concluded that 

matrices as large as 40 × 40 were almost certainly impossible to invert numerically in the 

face of roundoff. However, by the mid 1960's matrices as large as 100×100 were being 

inverted routinely, and nowadays equations with hundreds of thousands of unknowns are 

being solved during geodetic calculations worldwide. How can we reconcile these 

accomplishments with the fact that that famous scientist's mathematical analysis was quite 

correct? 

We understand better now than then why different formulas to calculate the same result 

might differ utterly in their degradation by rounding errors. For instance, we understand why 

the normal equations belonging to certain least-squares problems can be solved only in 

arithmetic carrying extravagantly high precision; this is what that famous scientist actually 

proved. We also know new procedures (one is presented on page 118) that can solve the 

same least-squares problems without carrying much more precision than suffices to represent 

the data. The new and better numerical procedures are not obvious, and might never have 

been found but for new and better techniques of error analysis by which we have learned to 

distinguish formulas that are hypersensitive to rounding errors from formulas that aren't. One 

of the new (in 1957) techniques is now called "backward error analysis," and you have 

already seen it in action twice: first, it explained why the procedure that calculates λ(x) is 

accurate enough to dispel the inaccuracy in example 2; next, it explained why the calculator's 

Æ functions very nearly satisfy the same identities as are satisfied by trig functions even 

for huge radian arguments x at which Æ(x) and trig(x) can be very different. The 

following paragraphs explain backward error analysis itself in general terms. 

Consider some system F intended to transform an input x into an output y = f(x). For 

instance, F could be a signal amplifier, a filter, a transducer, a control system, a refinery, a 

country's economy, a computer program, or a calculator. The input and output need not be 

numbers; they could be sets of numbers or matrices or anything else quantitative. Were the 

input x to be contaminated by noise Δx, 

then in consequence the output y + Δy = f(x + Δx) would generally be contaminated by noise 

Δy = f(x + Δx) − f(x). 
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Some transformations f are stable in the presence of input noise; they keep Δy relatively 

small as long as Δx is relatively small. Other transformations f may be unstable in the 

presence of noise because certain relatively small input noises Δx cause relatively huge 

perturbations Δy in the output. In general, the input noise Δx will be colored in some way by 

the intended transformation (on the way from input to output noise Δy, and no diminution in 

Δy is possible without either diminishing Δx or changing f. Having accepted f as a 

specification for performance or as a goal for design, we must acquiesce to the way f colors 

noise at its input. 

The real system F differs from the intended f because of noise or other discrepancies inside 

F. Before we can appraise the consequences of that internal noise we must find a way to 

represent it, a notation. The simplest way is to write 

F(x) = (f + δf)(x) 

where the perturbation δf represents the internal noise in F. 

 

We hope the noise term δf is negligible compared with f. When that hope is fulfilled, we 

classify F in Level 1 for the purposes of exposition; this means that the noise internal to F 

can be explained as one small addition of δf to the intended output f. 

For example F(x) = N(x) is classified in Level 1 because the dozens of small errors 

committed by the HP-15C during its calculation of F(x) = (f + δf)(x) amounts to a 

perturbation of δf(x) smaller than 0.6 in the last (10th) significant digit of the desired output 

f(x) = ln(x). But F(x) = [(x) is not in Level 1 for radian x because F(x) can differ too 

much from f(x) = sin(x); for instance F(10
14$) = 0.799... is opposite in sign from 

f(10
14$)= −0.784…, so the equation F(x) = (f + δf)(x) can be true only if δf is sometimes 

rather bigger than f, which looks bad. 

Real systems more often resemble [than N. Noise in most real systems can 

accumulate occasionally to swamp the desired output. at least for some inputs. and yet such 

systems do not necessarily deserve condemnation. Many a real system F operates reliably 

because its internal noise, though sometimes large, never causes appreciably more harm than 

might be caused by some tolerably small perturbation δx to the input signal x. Such systems 

can be represented as 

F(x) = (f + δf) (x + δx) 

where δf is always small compared with f and δx is always smaller than or comparable with 

the noise Δx expected to contaminate x. The two noise terms δf and δx are hypothetical noises 
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introduced to explain diverse noise sources actually distributed throughout F. Some of the 

noise appears as a tolerably small perturbation δx to the input—hence the term "backward 

error analysis." Such a system F, whose noise can be accounted for by two tolerably small 

perturbations, is therefore classified into Level 2 for purposes of exposition. 

 

No difference will be perceived at first between Level 1 and Level 2 by readers accustomed 

to linear systems and small signals because such systems' errors can be referred 

indiscriminately to output or input. However, other more general systems that are digital or 

nonlinear do not admit arbitrary reattribution of output noise to input noise nor vice-versa. 

For example, can all the error in \ be attributed, merely by writing                            

\ (x) = cos(x + δx), to an input perturbation δx small compared with the input x? Not 

when x is very small. For instance, when x approaches 10
-5

 radians, then cos(x) falls very 

near 0.99999999995 and must then round to either 1 = cos(0) or 0.9999999999                       

= cos(1.414 ... × 10
-5

). Therefore \ (x) = cos(x + δx) is true only if δx is allowed to be 

relatively large, nearly as large as x when x is very small. If we wish to explain the error in 

\ by using only relatively small perturbations, we need at least two of them: one a 

perturbation δx = (−6.58 ... × 10
-14

) x smaller than roundoff in the input; and another in the 

output comparable with roundoff there, so that  \ (x) = (cos + δcos)(x + δx) for some 

unknown |δcos| ≤ (6×10
-10

)|cos|.  

Like \ every system F in Level 2 is characterized by just two small tolerances—call 

themεand η—that sum up all you have to know about that system's internal noise. The 

tolerance ε constrains a hypothetical output noise, |δf| ≤ε|f|, and η constrains a hypothetical 

input noise, |δx| ≤ η|x|, that might appear in a simple formula like 

F(x) = (f + δf) (x + δx)    for |δf| ≤ε|f| and |δx| ≤ η|x|. 

The goal of backward error analysis is to ascertain that all the internal noise of F really can 

be encompassed by so simple a formula with satisfactorily small tolerancesεand η. At its 

best, backward error analysis confirms that the realized value F(x) scarcely differs from the 

ideal value f(x + δx) that would have been produced by an input x + δx scarcely different 

from the actual input x, and gives the word "scarcely" a quantitative meaning (εand η). But, 

backward error analysis succeeds only for systems F designed very carefully to ensure that 

every internal noise source is equivalent at worst to a tolerably small input or output 

perturbation. First attempts at system design, especially programs to perform numerical 

computations, often suffer from internal noise in a more complicated and disagreeable way 

illustrated by the following example. 
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Example 6: The Smaller Root of a Quadratic. The two roots x and y of the quadratic 

equation c − 2bz + az
2
 = 0 are real whenever d = b

2
 − ac is nonnegative. Then the root y of 

smaller magnitude can be regarded as a function y = f(a,b,c) of the quadratic's coefficients 



 


otherwise.                      2/)/(

0if       /))sgn((
),,(

bc

aabdb
cbaf  

Were this formula translated directly in a program F(a, b, c) intended to calculate f(a, b, c), 

then whenever ac is so small compared with b
2
 that the computed value of d rounds to b

2
, 

that program could deliver F = 0 even though f ≠ 0. So drastic an error cannot be explained 

by backward error analysis because no relatively small perturbations to each coefficient a, b, 

and c could drive c to zero, as would be necessary to change the smaller root y into 0. On the 

other hand, the algebraically equivalent formula 



 


                                 otherwise                                      0

                nonzero isdivisor  if           ))sgn(/(
),,(

bdbc
cbaf  

translates into a much more accurate program F whose errors do no more damage than would 

a perturbation in the last (10th) significant digit of c. Such a program will be listed later (page 

172) and must be used in those instances, common in engineering, when the smaller root y is 

needed accurately despite the fact that the quadratic's other unwanted root is relatively large. 

Almost all the functions built into the HP-15C have been designed so that backward error 

analysis will account for their errors satisfactorily. The exceptions are _, f, and the 

statistics keys S, L, and j which can malfunction in certain pathological cases. 

Otherwise, every calculator function F intended to produce f(x) produces instead a value F(x) 

no farther from f(x) than if first x had been perturbed to x+δx with |δx| ≤ η|x|, then f(x+δx) 

were perturbed to(f+δf)(x+δx) with|δf| ≤ ε|f|. The tolerances η and ε vary a little from function 

to function; roughly speaking 

η = 0 and ε < 10
-9

  for all functions in Level 1, 

η < 10
-12

 and ε < 6×10
-10

 for all real and complex functions. 

For matrix operations, the magnitudes |δx|, |x|, |δf|, and |f| replaced by matrix norms ||δx||, ||x||, 

||δf||, and ||f|| respectively, which are explained in section 4 and evaluated using > 7 or 

> 8. Then all matrix functions not in Level 1 fall into Level 2 with roughly 

η ≤ 10
-12

 n and ε < 10
-9

 for all matrix operations (other than             

determinant > 9, ÷, ⁄) 

η < 10
-9

 n and ε < 10
-9

 for determinant > 9, ⁄, 

and ÷ with matrix divisor 

where n is the largest dimension of any matrix involved in the operation. 

The implications of successful backward error analysis look simple only when the input data 

x comes contaminated by unavoidable and uncorrelated noise Δx, as is often the case. Then 
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when we wish to calculate f(x), the best we could hope to get is f(x + Δx), but we actually get 

F(x+Δx)=(f+δf)(x+Δx+δx), where |δf| ≤ ε|f| and  |δx| ≤ η|x|. 

What we get is scarcely worse than the best we could hope for provided the tolerances ε and 

η are small enough, particularly if |Δx| is likely to be at least roughly as big as η|x|. Of course, 

the best we could hope for may be very bad, especially if f possesses a singularity closer to x 

than the tolerances upon x's perturbation Δx and δx. 

Backward Error Analysis Versus Singularities 

The word "singularity" refers to both a special value of the argument x and to the way f(x) 

misbehaves as x approaches that special value. Most commonly, f(x) or its first derivative 

f'(x) may become infinite or violently oscillatory as x approaches the singularity. Sometimes 

the singularities of ln|f| are called singularities of f, thereby including the zeros of f among its 

singularities; this makes sense when the relative accuracy of a computation of f is at issue, as 

we shall see. For our purposes the meaning of "singularity" can be left a little vague. 

What we usually want to do with singularities is avoid or neutralize them. For instance, the 

function 

 




 


 otherwise                        21

    0 if        2cos1 
)(

xxx
xc  

has no singularity at x = 0 even though its constituents 1 − cos x and x
2
 (actually, their 

logarithms) do behave singularly as x approaches 0. The constituent singularities cause 

trouble for the program that calculates c(x). Most of the trouble is neutralized by the choice 

of a better formula 

 



















 otherwise.                           21

    02 if         

2

2

2sin

2

1
)( x

x

x
xc  

Now the singularity can be avoided entirely by testing whether x/2 = 0 in the program that 

calculates c(x). 

Backward error analysis complicates singularities in a way that is easiest to illustrate with the 

function λ(x) = ln(1 + x) that solved the savings problem in example 2. The procedure used 

there calculated u = 1 + x (rounded) = 1 + x + Δx. Then 










 otherwise.     )1()ln(

    1u if               
)(

uxu

x
x  

This procedure exploits the fact that λ(x)/x has a removable singularity at x = 0, which means 

that λ(x)/x varies continuously and approaches 1 as x approaches 0. Therefore, λ(x)/x is 

relatively closely approximated by λ(x+Δx) / (x+Δx) when |Δx| < 10
-9

, and hence 

λ(x) = x(λ(x)/x)  ≈  x(λ(x+Δx)/(x+Δx)) = x(ln(u)/(u−1)), 
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all calculated accurately because N is in Level 1. What might happen if N were in Level 

2 instead? 

If N were in Level 2, then "successful" backward error analysis would show that, for 

arguments u near 1, N (u) = ln(u +δu) with |δu| < 10
-9

. Then the procedure above would 

produce not x(ln(u)/(u−1)), but 

.1)(

1
)(

)(

)(

)(

1

)ln(

















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






















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

























xx

u
x

xx

u

x

x
x

xx

uxx

uxx

uxx
x

xx

uxxx

u

uu
x














 

When |x+Δx| is not much bigger than 10
-9

, the last expression can be utterly different from λ 

(x). Therefore, the procedure that solved example 2 would fail on machines whose N is not 

in Level 1. There are such machines, and on them the procedure does collapse for certain 

otherwise innocuous inputs. Similar failures also occur on machines that produce (u+δ’u) − 1 

instead of u − 1 because their - function lies in Level 2 instead of Level 1. And those 

machines that produce ln(u + δu )/(u + δ’u − 1) instead of ln(u)/(u − 1), because both N 

and - lie in Level 2, would be doubly vulnerable but for an ill-understood accident that 

usually correlates the two backward errors δu and δ’u in such a way as causes only half the 

significant digits of the computed λ, instead of all of them, to be wrong. 

Summary to Here 

Now that the complexity injected by backward error analysis into singularities has been 

exposed, the time has come to summarize, to simplify, and to consolidate what has been 

discussed so far. 

 Many numerical procedures produce results too wrong to be justified by any 

satisfactory error analysis, backward or not. 

 Some numerical procedures produce results only slightly worse than would have been 

obtained by exactly solving a problem differing only slightly from the given problem. 

Such procedures, classified in Level 2 for our purposes, are widely accepted as 

satisfactory from the point of view of backward error analysis. 

 Procedures in Level 2 can produce results relatively far from what would have been 

obtained had no errors at all been committed, but large errors can result only for data 

relatively near a singularity of the function being computed. 

 Procedures in Level 1 produce relatively accurate results regardless of near approach to 

a singularity. Such procedures are rare, but preferable if only because their results are 

easier to interpret, especially when several variables are involved. 

A simple example illustrates all four points. 
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Example 7: The Angle in a Triangle. The cosine law for triangles says 

r
2
 = p

2
 + q

2
 – 2pq cos θ 

for the figure shown below. Engineering and scientific calculations often require that the 

angle θ be calculated from given values p, q, and r for the length of the triangle's sides. This 

calculation is feasible provided 0 < p ≤ q + r, 0 < q ≤ p+r, and 0 ≤ r ≤ p+q, and then 

0 ≤ θ = cos
-1

(((p
2
+q

2
) −r

2
)/(2pq)) ≤ 180°; 

Otherwise, no triangle exists with those side lengths, or else θ = 0/0 is indeterminate. 

 

The foregoing formula for θ defines a function θ = f(p, q, r) and also in a natural way, a 

program F(p, q, r) intended to calculate the function. That program is labeled "A" below, 

with results FA (p, q, r) tabulated for certain inputs p, q, and r corresponding to sliver-shaped 

triangles for which the formula suffers badly from roundoff. The numerical unreliability of 

this formula is well known as is that of the algebraically equivalent but more reliable formula 

θ = f(p, q, r) = 2 tan
-1

 )/(csab , where s = (p + q + r)/2, a = s − p, b = s − q, and c = s − r. 

Another program F(p, q , r) based upon this better formula is labeled "B" below, with results 

FB(p, q, r) for selected inputs. Apparently FB is not much more reliable than FA. Most of the 

poor results could be explained by backward error analysis if we assume that the calculations 

yield F(p, q, r) = f(p + δp, q + δq, r + δr) for unknown but small perturbations satisfying    

|δp| < 10
-9

|p|, etc. Even if this explanation were true, it would have perplexing and 

disagreeable consequences, because the angles in sliver-shaped triangles can change 

relatively drastically when the sides are perturbed relatively slightly; f(p, q, r) is relatively 

unstable for marginal inputs. 

Actually the preceding explanation is false. No backward error analysis could account for the 

results tabulated for FA and FB under case 1 below unless perturbations δp, δq, and δr were 

allowed to corrupt the fifth significant digit of the input, changing 1 to 1.0001 or 0.9999. 

That much is too much noise to tolerate in a 10-digit calculation. A better program by far is 

FC, labeled "C" and explained shortly afterwards. 

The three bottom lines in the table below show results for three programs "A", "B", and "C" 

based upon three different formulas F(p, q, r) all algebraically equivalent to 

θ = f(p, q, r) = cos
-1

((p
2
 + q

2
 − r

2
)/(2pq)). 

 



164 Appendix: Accuracy of Numerical Calculations 

164 

Disparate Results from Three Programs FA, FB, FC 

 Case 1 Case 2 Case 3 

p      1.     9.999999996   10. 

q      1.     9.999999994     5.000000001 

r      1.00005 × 10-5     3 × 10-9   15. 

FA      0.     0. 180. 

FB      5.73072 × 10-4         Error 0 180. 

FC      5.72986 × 10-4    1.28117 × 10-8 179.9985965 

 Case 4 Case 5 Case 6 

p      0.527864055      9.999999996   9.999999999 

q      9.472135941      3 × 10-9       9.999999999 

r      9.999999996      9.999999994     20. 

FA          Error 0    48.18968509 180. 

FB          Error 0          Error 0 180. 

FC 180. 48.18968510        Error 0 

 Case 7 Case 8 Case 9 

p     1.00002    3.162277662     3.162277662 

q       1.00002    2.3 × 10-9     1.5555 × 10-6 

r       2.00004    3.162277661     3.162277661 

FA           Error 0  90.   90. 

FB 180.  70.52877936 89.96318706 

FC 180.    64.22853822     89.96315156 

To use a program, key in p v q v r, run program "A", "B", or "C", and wait to 

see the program's approximation F  to θ  = f. Only program "C" is reliable. 

Keystrokes Display  

|D   

|¥   

´CLEARM  000-  

´bA  001-42,21,11  

|x  002-   43 11  

®  003-      34  

|x  004-   43 11  

|K  005-   43 36  

|(  006-   43 33  
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Keystrokes Display  

*  007-      20  

®  008-      34  

|K  009-   43 36  

|x  010-   43 11  

+  011-      40  

|(  012-   43 33  

-  013-      30  

®  014-      34  

v  015-      36  

+  016-      40  

÷  017-      10  

|{  018-   43 24  

|n  019-   43 32  

´bB  020-42,21,12  

O1  021-   44  1  

v  022-      36  

|(  023-   43 33  

O+1  024-44,40, 1  

|(  025-   43 33  

O+1  026-44,40, 1  

2  027-       2  

O÷1  028-44,10, 1  

)  029-      33  

l-1  030-45,30, 1  

®  031-      34  

l-1  032-45,30, 1  

*  033-      20  

¤  034-      11  

®  035-      34  

l-1  036-45,30, 1  

l*1  037-45,20, 1  

”  038-      16  

¤  039-      11  

|:  040-   43  1  

)  041-      33  

*  042-      20  

|n  043-   43 32  

´bC  044-42,21,13  

O0  045-   44  0  



166 Appendix: Accuracy of Numerical Calculations 

166 

Keystrokes Display  

)  046-      33  

|£  047-   43 10  

®  048-      34  

O1  049-   44  1  

O+0  050-44,40, 0  

®  051-      34  

O+0  052-44,40, 0  

-  053-      30  

|(  054-   43 33  

O-1  055-44,30, 1  

|K  056-   43 36  

v  057-      36  

l+1  058-45,40, 1  

¤  059-      11  

´X0  060-42, 4, 0  

¤  061-      11  

O*0  062-44,20, 0  

|`  063-   43 35  

+  064-      40  

)  065-      33  

+  066-      40  

´X1  067-42, 4, 1  

|(  068-   43 33  

|K  069-   43 36  

|£  070-   43 10  

t.9  071-   22 .9  

)  072-      33  

|T2  073-43,30, 2  

¤  074-      11  

®  075-      34  

t.8  076-   22 .8  

´b.9  077-42,21,.9  

|T2  078-43,30, 2  

¤  079-      11  

|(  080-   43 33  

´b.8  081-42,21,.8  

-  082-      30  

¤  083-      11  

l1  084-   45  1  
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Keystrokes Display  

¤  085-      11  

*  086-      20  

l0  087-   45  0  

|:  088-   43  1  

|~  089-   43 20  

÷  090-      10  

®  091-      34  

v  092-      36  

+  093-      40  

|n  094-   43 32  

|¥   

The results FC(p, q , r) are correct to at least nine significant digits. They are obtained from a 

program "C" that is utterly reliable though rather longer than the unreliable programs "A" and 

"B". The method underlying program "C" is: 

1. If p < q, then swap them to ensure p ≥ q. 

2. Calculate b=(p−q)+r, c=(p−r)+q, and s=(p+r)+q. 

3. Calculate 















                         exists).  triangle(no otherwise                    

                                                     0 if                  )(

                                                      0if                   )(

0 Error

qrrpq

r qqpr

a  

4. Calculate FC(p, q, r) = 2 tan
-1

 ( csab ). 

This procedure delivers FC(p, q, r) = θ correct to almost nine significant digits, a result surely 

easier to use and interpret than the results given by the other better-known formulas. But this 

procedure's internal workings are hard to explain; indeed, the procedure may malfunction on 

some calculators and computers. 

The procedure works impeccably on only certain machines like the HP-15C, whose 

subtraction operation is free from avoidable error and therefore enjoys the following 

property: Whenever y lies between x/2 and 2x, the subtraction operation introduces no 

roundoff error into the calculated value of x − y. Consequently, whenever cancellation might 

leave relatively large errors contaminating a, b, or c, the pertinent difference (p − q) or (p − r) 

turns out to be free from error, and then cancellation turns out to be advantageous! 

Cancellation remains troublesome on those other machines that calculate (x +δx) − (y + δy) 

instead of x − y even though neither δx nor δy amounts to as much as one unit in the last 

significant digit carried in x or y respectively. Those machines deliver FC(p, q, r) = f(p + δp,  

q + δq, r + δr) with end-figure perturbations δp , δq, and δr that always seem negligible from 

the viewpoint of backward error analysis, but which can have disconcerting consequences. 

For instance, only one of the triples (p, q, r) or (p + δp, q + δq, r + δr), not both, might 
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constitute the edge lengths of a feasible triangle, so FC might produce an error message when 

it shouldn't, or vice-versa, on those machines. 

Backward Error Analysis of Matrix Inversion 

The usual measure of the magnitude of a matrix X is a norm ||X|| such as is calculated by 

either >7 or >8; we shall use the former norm, the row norm 


j

ijx
i

maxX  

in what follows. This norm has properties similar to those of the length of a vector and also 

the multiplicative property 

||XY|| ≤ ||X|| ||Y|| . 

When the equation Ax = b is solved numerically with a given n × n matrix A and column 

vector b, the calculated solution is a column vector c which satisfies nearly the same equation 

as does x, namely 

(A + δA) c = b 

with ||δA|| < 10
-9

 n ||A||. 

Consequently the residual b − Ac = (δA)c is always relatively small; quite often the residual 

norm ||b − Ac|| smaller than xAb    where x  is obtained from the true solution x by 

rounding each of its elements to 10 significant digits. Consequently, c can differ significantly 

from x only if A is nearly singular, or equivalently only if ||A
-1

|| is relatively large compared 

with 1/||A||; 

   ||x − c|| = ||A
-1

(b − Ac)|| 

               ≤ ||A
-1

|| ||δA|| ||c|| 

               ≤ 10
-9

 n ||c|| / σ(A) 

where σ(A) = 1/(||A|| ||A
-1

||) is the reciprocal of the condition number and measures how 

relatively near to A is the nearest singular matrix S, since 

.σ
0)det(

min A(A)SA
S




 

These relations and some of their consequences are discussed extensively in section 4. 

The calculation of A
-1

 is more complicated. Each column of the calculated inverse ⁄(A) is 

the corresponding column of some (A+δA)
-1

, but each column has its own small δA. 

Consequently, no single small δA, with ||δA||≤10
-9

 n ||A||, need exist satisfying 

||(A+ δA)
-1 

− ⁄ (A)|| ≤ 10
-9

 ||⁄ (A)|| 

roughly. Usually such a δA exists, but not always. This does not violate the prior assertion 

that the matrix operations ⁄and ÷ lie in Level 2; they are covered by the second 

assertion of the summary on page 162. The accuracy of ⁄ (A) can be described in terms of 

the inverses of all matrices A + ΔA so near A that ||ΔA|| ≤ 10
-9

 n||A||; the worst among those 
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(A + ΔA)
-1

 is at least about as far from A
-1

 in norm as the calculated ⁄ (A). The figure 

below illustrates the situation. 

 

As A + ΔA runs through matrices with ||ΔA|| at least about as large as roundoff in ||A||, its 

inverse (A + ΔA)
-1

 must roam at least about as far from A
-1 

as the distance from A
-1

 to the 

computed ⁄ (A). All these excursions are very small unless A is too near a singular 

matrix, in which case the matrix should be preconditioned away from near singularity. (Refer 

to section 4.) 

If among those neighboring matrices A + ΔA lurk some that are singular, then many (A + 

ΔA)
-1

 and ⁄ (A) may differ utterly from A
-1

. However, the residual norm will always be 

relatively small: 

.
910

1)(

1)(
n





A

ΔA

ΔAAA

IΔAAA

 

This last inequality remains true when ⁄ (A) replaces (A + ΔA)
-1

. 

If A is far enough from singularity that all 

1/||(A + ΔA)
-1

|| > 10
-9

 n ||A|| ≥ ||ΔA||, 

then also 

.
1)(9101

1)(910

1)(1

1)(

1)(

1)(1
















ΔAAA

ΔAAA

ΔAAΔA

ΔAAΔA

ΔAA

ΔAAA

n

n

-

 

This inequality also remains true when ⁄ (A) replaces (A + ΔA)
-1

, and then everything on 

the right-hand side can be calculated, so the error in ⁄ (A) cannot exceed a knowable 

amount. In other words, the radius of the dashed ball in the figure above can be calculated. 

The estimate above tend to be pessimistic. However, to show why nothing much better is true 

in general, consider the matrix 
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

























000,52000

03.000,5000002.000

4503.000,50000,500

4503.000,5000050000020 ,.

X  

and 



























692300001923070000

95192076480005000

980770764803000500000200

0005000050

1

.

.,,

.,.,.

qp,,

-
X  

Ideally, p = q = 0, but the HP-15C's approximation to X
-1

, namely ⁄ (X), has                     

q = 9.643.269231 instead, a relative error 

,0964.0
)(            

1

1








X

XX

 

Nearly 10 percent. On the other hand, if X + ΔX differs from X only in its second column 

where −50,000 and 50,000 are replaced respectively by −50,000.000002 and 49,999.999998 

(altered in the 11th significant digit), then (X + ΔX)
-1

 differs significantly from X
-1

 only 

insofar as p = 0 and q = 0 must be replaced by p = 10,000.00600 ... and q = 9,615.396154 .... 

Hence, 

 
;196.0

1

11








X

ΔXXX

 

the relative error in (X + ΔX)
-1

 is nearly twice that in ⁄ (X). Do not try to calculate (X + 

ΔX)
-1 

directly. but use instead the formula 

(X − cb
T
)

-1
 = X

-1
 + X

-1
cb

T
X

-1
 / (1 − b

T
X

-1
c), 

which is valid for any column vector c and row vector b
T
, and specifically for 





















0

0

1

1

c  and  00000002.00T
b . 

Despite that 

||X
-1

 − ⁄ (X)|| < ||X
-1

 − (X+ ΔX)
-1

|| , 

it can be shown that no very small end-figure perturbation δX exists for which (X + δX)
-1

 

matches ⁄ (X) to more than five significant digits in norm. 

⁄ 
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Of course, none of these horrible things could happen if X were not so nearly singular. 

Because ||X|| ||X
-1

|| > 10
10

, a change in X amounting to less than one unit in the 10th 

significant digit of ||X|| could make X singular; such a change might replace one of the 

diagonal elements 0.00002 of X by zero. Since X is so nearly singular, the accuracy ⁄(X) 

in this case rather exceeds what might be expected in general. What makes this example 

special is bad scaling; X was obtained from an unexceptional matrix 































25000

0000035200

1054000003550

10540000035502

~
12

12

.

..

...

....

X  

by multiplying each row and each column by a carefully chosen power of 10. Compensatory 

division of the columns and rows of the equally unexceptional matrix 



























19230769230000

480769519205000

480769807700000035200

5050

~ 1

.

..

...

qp..

-
X  

yielded X
-1

, with p = q = 0. The HP-15C calculates ⁄( X
~

) = X
~ -1

 except that q = 0 is 

replaced by q = 9.6×10
-11

, a negligible change. This illustrates how drastically the perceived 

quality of computed results can be altered by scaling. (Refer to section 4 for more 

information about scaling.) 

Is Backward Error Analysis a Good Idea? 

The only good thing to be said for backward error analysis is that it explains internal errors in 

a way that liberates a system's user from having to know about internal details of the system. 

Given two tolerances, one upon the input noise s« and one upon the output noise δf, the user 

can analyze the consequences of internal noise In 

F(x) = (f + δf) (x + δx) 

by studying the noise propagation properties of the ideal system f without further reference to 

the possibly complex internal structure of F. 

But backward error analysis is no panacea; it may explain errors but not excuse them. 

Because it complicates computations involving singularities, we have tried to eliminate the 

need for it wherever we could. If we knew how to eliminate the need for backward error 

analysis from every function built into the calculator, and to do so at tolerable cost, we would 

do that and simplify life for everyone. That simplicity would cost too much speed and 

memory for today's technology. The next example will illustrate the trade-offs involved. 



172 Appendix: Accuracy of Numerical Calculations 

172 

Example 6 Continued. The program listed below solves the real quadratic equation c − 2 bz 

+ az
2
 = 0 for real or complex roots. 

To use the program, key the real constants into the stack (c v b v a) and run 

program "A". 

The roots x and y will appear in the X- and Y-registers. If the roots are complex, the C 

annunciator turns on, indicating that Complex mode has been activated. The program uses 

labels "A" and ".9" and the Index register (but none of the other registers 0 to .9); therefore, 

the program may readily be called as a subroutine by other programs. The calling programs 

(after clearing flag 8 if necessary) can discover whether roots are real or complex by testing 

flag 8, which gets set only if roots are complex. 

The roots x and y are so ordered that |x| ≥ |y| except possibly when  |x| and |y| agree to more 

than nine significant digits. The roots are as accurate as if the coefficient c had first been 

perturbed in its 10th significant digit, the perturbed equation had been solved exactly, and its 

roots rounded to 10 significant digits. Consequently, the computed roots match the given 

quadratic's roots to at least five significant digits. More generally, if the roots x and y agree to 

n significant digits for some positive n ≤ 5, then they are correct to at least 10 − n significant 

digits unless overflow or underflow occurs. 

Keystrokes Display  

|¥   

´CLEARM  000-  

´bA  001-42,21,11  

v  002-      36  

|(  003-   43 33  

*  004-      20  

|K  005-   43 36  

®  006-      34  

|(  007-   43 33  

OV  008-   44 25  

|x  009-   43 11  

-  010-      30  

|T1  011-43,30, 1  

t.9  012-   22 .9  

”  013-      16  

¤  014-      11  

´XV  015-42, 4,25  

|T2  016-43,30, 2  

l-V  017-45,30,25  

|T3  018-43,30, 3  

l+V  019-45,40,25  

|T0  020-43,30, 0  
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Keystrokes Display  

÷  021-      10  

|K  022-   43 36  

|(  023-   43 33  

÷  024-      10  

|n  025-   43 32  

´b.9  026-42,21,.9  

¤  027-      11  

lV  028-   45 25  

|(  029-   43 33  

÷  030-      10  

®  031-      34  

|K  032-   43 36  

÷  033-      10  

´V  034-   42 25  

v  035-      36  

´}  036-   42 30  

”  037-      16  

´}  038-   42 30  

|n  039-   43 32  

|¥   

The method uses d = b
2
 − ac. 

If d < 0, then the roots are a complex conjugate pair 

  adiab  . 

If d ≥ 0, then the roots are real numbers x and y calculated by 

)(sgn bdbs   

asx /  










0.s if      0

  0s if   / sc
y  

The s calculation avoids destructive cancellation. 

When a = 0 ≠ b, the larger root x, which should be ∞, encounters division by zero (Error 0) 

that can be cleared by pressing ) three times to exhibit the smaller root y correctly 

calculated. But when all three coefficients vanish, the Error 0 message signals that both 

roots are arbitrary. 
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The results of several cases are summarized below. 

 Case 1 Case 2 Case 3 Case 4 

c 3 4 1 654,321 

b 2 0 1 654,322 

a 1 1 10-13 654,323 

Roots Real Complex  Real Real 

 3 0 ± 2i 2 × 1013 0.9999984717 

 1  0.5 0.9999984717 

 Case 5 Case 6 

c 46,152,709 12,066,163 

b 735,246 987,644 

a 11,713 80,841 

Roots Real Complex 

 62.77179203 12.21711755 ± i0.001377461 

 62.77179203  

The last three cases show how severe are the results of perturbing the 10th significant digit of 

any coefficient of any quadratic whose roots are nearly coincident. The correct roots for these 

cases are 

Case 4:  1 and 0.9999969434 

Case 5:  62.77179203 ± i 8.5375×10
-5

 

Case 6:  12.21711755 ± i 0.001374514 

Despite errors in the fifth significant digit of the results, subroutine "A" suffices for almost 

all engineering and scientific applications of quadratic equations. Its results are correct to 

nine significant digits for most data, including c, b, and a representable exactly using only 

five significant digits; and the computed roots are correct to at least five significant digits in 

any case because they cannot be appreciably worse than if the data had been entered with 

errors in the 10th significant digit. Nonetheless, some readers will feel uneasy about results 

calculated to 10 significant digits but correct to only 5. If only to simplify their understanding 

of the relationship between input data and output results, they might still prefer roots correct 

to nine significant digits in all cases. 

Programs do exist which, while carrying only 10 significant digits during arithmetic, will 

calculate the roots of any quadratic correctly to at least nine significant digits regardless of 

how nearly coincident those roots may be. All such programs calculate d = b
2
 − ac by some 

trick tantamount to carrying 20 significant digits whenever b
2
 and ac nearly cancel, so those 

programs are a lot longer and slower than the simple subroutine "A" provided above. 
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Subroutine "B" below, which uses such a trick,* is a very short program that guarantees nine 

correct significant digits on a 10-digit calculator. It uses labels "B", ".7", and ".8" and 

registers R0 through R9 and the Index register. To use it, key in c v b v a, run 

subroutine "B", and wait for results as before. 

Keystrokes Display  

|¥   

´CLEARM  000-  

´bB  001-42,21,12  

OV  002-   44 25  

)  003-      33  

O0  004-   44  0  

O8  005-   44  8  

®  006-      34  

O1  007-   44  1  

O9  008-   44  9  

´i2  009-42, 8, 2  

´b.8  010-42,21,.8  

´CLEAR∑  011-   42 32  

l8  012-   45  8  

O7  013-   44  7  

l÷V  014-45,10,25  

|&  015-   43 34  

lV  016-   45 25  

|w  017-   43 49  

l9  018-   45  9  

´X7  019-42, 4, 7  

®  020-      34  

l8  021-   45  8  

|w  022-   43 49  

)  023-      33  

|w  024-   43 49  

l7  025-   45  7  

|a  026-   43 16  

l9  027-   45  9  

|a  028-   43 16  

|£  029-   43 10  

tB  030-   22 12  

v  031-      36  

                                                           

* Program "B" exploits a tricky property of the z and z keys whereby certain calculations can be carried out to 13 significant digits before being rounded 

back to 10. 
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Keystrokes Display  

|(  032-   43 33  

O8  033-   44  8  

l7  034-   45  7  

O9  035-   44  9  

|a  036-   43 16  

“  037-      26  

2  038-       2  

0  039-       0  

*  040-      20  

l1  041-   45  1  

|a  042-   43 16  

|£  043-   43 10  

t.8  044-   22 .8  

´bB  045-42,21,12  

´•9  046-42, 7, 9  

l8  047-   45  8  

|x  048-   43 11  

O7  049-   44  7  

lV  050-   45 25  

l9  051-   45  9  

|w  052-   43 49  

l7  053-   45  7  

|T2  054-43,30, 2  

T .7  055-   22 .7  

¤  056-      11  

´X0  057-42, 4, 0  

|T2  058-43,30, 2  

l-0  059-45,30, 0  

|T3  060-43,30, 3  

l+0  061-45,40, 0  

´X1  062-42, 4, 1  

|T0  063-43,30, 0  

l÷1  064-45,10, 1  

l1  065-   45  1  

l÷V  066-45,10,25  

|n  067-   43 32  

´b.7  068-42,21,.7  

”  069-      16  

¤  070-      11  
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Keystrokes Display  

l÷V  071-45,10,25  

v  072-      36  

”  073-      16  

l0  074-   45  0  

lV  075-   45 25  

÷  076-      10  

®  077-      34  

´V  078-   42 25  

v  079-      36  

|(  080-   43 33  

´V  081-   42 25  

|n  082-   43 32  

|¥   

This program's accuracy is phenomenal: better than nine significant digits even for the 

imaginary parts of nearly indistinguishable complex roots (as when c = 4,877,163,849 and    

b = 4,877,262,613 and a = 4,877,361,379); if the roots are integers, real or complex, and if    

a = 1, then the roots are calculated exactly (as when c = 1,219,332,937×10
1
, b = 111,111.5, 

and a = 1). But the program is costly; it uses more than twice as much memory for both 

program and data as does subroutine "A", and much more time, to achieve nine significant 

digits of accuracy instead of five in a few cases that can hardly ever matter−simply because 

the quadratic's coefficients can hardly ever be calculated exactly. If any coefficient c, b, or a 

is uncertain by as much as one unit in its 10th significant digit, then subroutine "B" is 

overkill. Subroutine "B" is like Grandmother's expensive chinaware, reserved for special 

occasions, leaving subroutine "A" for everyday use.  
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A 

Absolute error · 146, 153, 154 

Accuracy 

in Complex mode · 63–65 

of integrand · 41–43 

of numerical calculations · 145–177 

of solutions to linear system · 87–88 

Aliasing · 41 

Analysis of variance · 113–118 

Analysis, discounted cash flow · 34–39 

Angle in triangle · 163–168 

Annuities · 24–34 

Annuity due · 25 

Annuity, ordinary · 25 

Annunciator, C · 172 

Annunciator, trig mode · 58 

ANOVA table · 113, 118 

Augmented matrix · 118 

Augmented normal equations · 94 

Augmented system · 120 

B 

Backward error analysis · 157–161 

Balloon payment · 25, 27, 32 

Binomial theorem · 148 

Bounding search · 136, 137, 141, 143 

Branch, principal · 59–62 

Bridge too short · 146 

Broken calculator · 145 

C 

Calculation time, f · 43–48 

Calculations, numerical accuracy · 145–177 

Cancellation · 148, 149, 152, 167, 173 

Cash flow analysis, discounted · 34–39 

Cash flow diagram · 25–39 

Characteristic equation · 69, 125 

Column norm · 84 

Complementary error function · 51–55 
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Complementary normal distribution function · 51–55 

Complex components, accurate · 64 

Complex equations, solving large system · 107–110 

Complex math functions · 59–62 

Complex mode · 56–81 

_ and f · 63 

accuracy · 63–65 

Complex multivalued functions · 59–62 

Complex number, n th roots · 59, 67–69 

Complex number, storing and recalling · 65–66 

Complex potential function · 76–81 

Complex relative error · 154 

Complex roots of equation · 69–73, 17–18 

Complex roots of quadratic equation · 171–177 

Complex single-valued functions · 59 

Components, accurate complex · 64 

Compound amounts · 24–34 

Condition number · 84–87, 91, 92, 168 

Conformal mapping · 76 

Constrained least-squares · 94, 97, 120 

Consumer price index · 116 

Contour integral · 73–76 

Correctly rounded result · 150–53 

perturbed input · 154–77 

Covariance matrix · 111, 112, 115 

Critical point · 135, 137 

D 

Declination · 13–15 

Decomposition, LU · 82–83 

descriptor · 83 

Deflation · 12 

Degrees of freedom · 104, 112 

Delay equation · 69–73 

Derivative · 12 

Descartes' Rule of Signs · 12–13 

Descriptor of LU decomposition · 83 

Determinant · 82–83, 99 

Diagram, cash flow · 25–39 

Discounted cash flow and analysis · 34–39 

Discounted rate of return · 35 

Display format · 40–43 

Doolittle method · 83 

E 

Eigenvalue · 125–35 

storage · 135 

Eigenvector · 125, 130–35 



180 Index 

180 

Electrostatic field · 50 

Endpoint, f sampling at · 41, 48 

Equations 

complex, solving large system · 107–110 

equivalent · 11–12 

solving inaccurate · 12 

solving nonlinear system · 102–107 

with several roots · 12 

Equipotential lines · 76–81 

Equivalent equations · 11–12 

Error · 145 

absolute · 146, 153 

hierarchy · 150 

in matrix elements · 84 

misconceptions · 145–149 

relative · 146, 151 

Error 0 · 27, 164, 167, 173 

Error 1 · 137, 141 

Error 4 · 26, 27, 35 

Error 8 · 11, 22 

Error analysis, backward · 157–161 

Example 

angle in triangle · 163–168 

annuities · 31–34 

bridge too short · 146 

broken calculator · 145 

cash flow · 38–39 

compound amounts · 31–34 

consumer price index regression · 116–118 

contour integral · 75–76 

declination of sun · 13–15 

delay equation · 69–73 

eigenvectors · 133–134 

equipotential line · 81 

field Intensity of antenna · 18–24 

filter network · 107–110 

Gamma function · 56–58 

lunar phases · 156 

n th root of complex number · 68 

normal distribution function · 42, 55 

optimizing box · 141–43 

pennies · 145–46 

pi · 146 

quadratic surface · 129–30 

residual correction · 101–2 

roots of quadratic equation · 160, 171–77 

storing and recalling complex numbers · 65–66 

streamline · 79–80 

subdividing interval of integration · 44–46 

transformation of variables · 47–48 

unbiased test of hypothesis · 103–7 
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Extended precision · 41 

Extremes of function · 18–24 

F 

F actorization, orthogonal · 95–98, 118–25 

F ratio · 112–18 

Field Intensity · 18–24 

Financial equation · 26 

Financial problems · 24–39 

Format, display · 40–41, 42 

Frobenius norm · 84 

Functions, complex · 59–62 

G 

Gamma function, complex · 56–58 

Gradient · 135, 136, 137, 141, 142 

Grandmother's expensive chinaware · 177 

H 

Hierarchy of error · 150 

Horner's method · 13, 14 

Hyperbolic cylinder · 129–30 

I 

Identity matrix · 100 

Ill-conditioned matrix · 84–87 

Ill-conditioned system of equations · 88–93 

Improper integral · 48–51 

Inaccurate equations, solving · 12 

Inaccurate roots · 11–12 

Input noise · 157–61 

Integral 

contour · 73–76 

evaluating difficult · 48–51 

improper · 48–51 

Integration in complex mode · 63 

Integration, numerical, using f · 40–55 

Interchange, row · 82, 83 

Interest rate · 24–39 

Internal rate of return · 34–39 

Interval of integration, subdividing · 43–48, 50 

Interval reduction · 136, 137 

Inverse iteration · 130 

Inverse of function · 59 

Inverse of matrix · 90, 101–102 
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backward error analysis · 168–171 

IRR · 34–39 

Iterative refinement · 88, 100–102 

J 

Jordon canonical form · 131 

L 

Large system of complex equations, solving · 107–110 

Least-squares · 93–98, 110–25, 157 

linearly constrained · 94, 120 

weighted · 93, 94, 97, 98, 120 

Least-Squares 

linearly constrained · 98 

Level 0 · 150 

Level 1 · 150–53, 159, 162 

Level 1C · 153–54 

Level 2 · 154–177 

Level ∞ · 150 

Line search · 136 

Linear model · 111 

Linear regression, multiple . See also Least-squares · 111 

Linear system, accuracy of numerical solution · 87–88 

Linearly constrained least-squares · 94, 97, 120 

Lower-triangular matrix · 82, 83 

LU decomposition · 82–83, 88, 98, 99, 100 

descriptor · 83 

Lunar phases · 156 

M 

Mapping, contour · 76 

Mathematical functions, complex · 59–62 

Mathematical functions, pure · 42–43 

Mathematical model · 42 

Matrix elements, errors in · 84–85 

Matrix inversion, backward error analysis · 168–171 

Matrix operations · 65–66 

error levels · 150, 160 

Maximum of function · 18–24, 135 

Mean-adjusted regression sum of squares · 113 

Minimum of function · 18–24, 135 

Model, linear · 111 

Model, mathematical · 42 

Monotonicity · 151, 156 

Multiple linear regression . See also Least-squares · 111 

Multiple root · 12 
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Multivalued functions, complex · 59–62 

N 

n th roots of complex number · 59, 67–69 

Nearly singular matrix · 88, 93 

Net present value · 34–39 

equation · 34 

Network, filter · 107–10 

Newton's iteration method · 69–70, 103 

Noise, input and output · 157–61 

Nonlinear equations, solving system · 102–7 

Nonsingular matrix · 85–86, 99 

Norm · 84, 85, 86, 90, 91 

Normal distribution · 42, 103, 112 

Normal distribution function · 42, 51–55 

complementary · 51–55 

Normal equations · 93–94, 110–18 

augmented · 93–94 

weighted · 93–94 

NPV · 34–39 

equation · 34 

Number of correct digits · 63, 102 

Numerical calculations, accuracy · 144–77 

Numerical Integration · 40–55 

Numerical solutions to linear system, accuracy · 87–88 

Numerically finding roots · 9–39 

O 

Optimization · 135–44 

Ordinary annuity · 25 

Orthogonal factorization · 93, 95–98, 118, 120 

Orthogonal matrix · 96, 118, 119, 125, 126 

Output noise · 157–61 

Overflow · 150 

P 

Payment · 24–34 

Pennies · 145–46 

Phases, lunar · 156 

Physical situation · 42 

Pi · 146 

Pivots · 98 

Polar form · 59 

Polynomials · 12–16 

Potential function, complex · 76–81 

Precision, extended · 41 
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184 

Preconditioning a system · 91–93 

Present value · 24–39 

Principal branch · 59–62 

Principal value · 59–62 

Q 

Quadratic equation, roots · 160, 171–77 

Quadratic surface · 126, 129–30 

R 

Radians, in complex mode · 58 

Rate of return · 34–39 

Recalling complex numbers · 65–66 

Rectangular form · 59 

Refinement, iterative · 88 

Regression sum of squares · 111–18 

mean-adjusted · 113 

Regression, multiple linear . See also Least-squares · 111 

Relative error · 146, 153 

complex · 63–65 

Relative uncertainty of matrix · 85 

Repeated estimation · 22–24 

Residual · 100–102 

Residual correction · 100–102 

Residual sum of squares · 111–18 

Resonance · 41 

Return, rate of · 34–39 

Romberg method · 41 

Roots 

complex · 69–73, 17–18 

equations with several · 12 

inaccurate · 11–12 

multiple · 12 

not found · 11, 26 

numerically finding · 9–39 

of complex number · 59, 67–69 

of equation, complex · 69–73 

of quadratic equation · 160, 171–77 

Rounding error · 41, 42 

Round-off error . See also Rounding error · 41, 42 

Row interchange · 82, 83, 98 

Row norm · 84, 168 

S 

Saddle-point · 137 

Samples, _ · 9–11, 63 
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Sampling, f · 41, 48, 63 

Scaling a matrix · 88–91 

Scaling a system · 90–91 

Secant method · 9 

Sign change · 10 

Sign symmetry · 151, 156 

Single-valued functions, complex · 59 

Singular matrix · 85–86, 98–100, 168 

Singularity and backward error analysis · 161–62 

Skew-symmetric matrix · 126 

Slope · 20–22 

Smaller root of quadratic equation · 160, 171–77 

Solutions to linear system, accuracy · 87–88 

_ · 9–39 

algorithm · 9–11, 63 

in Complex mode · 63 

Solving a system of equations · 16–18, 83, 99, 102–107 

Solving a system of nonlinear equations · 102–107 

Solving equation for complex roots · 69–73 

Solving large system of complex equations · 107–10 

Steepest descent · 135 

Storing complex numbers · 65–66 

Streamline · 76–80 

Subdividing intervall of integration · 43–48, 50 

Subinterval · 43–48 

Successive rows · 118–25 

Sum of squares · 96, 111, 112, 113 

Symmetric matrix · 125–26 

System of complex equations, solving large · 107–10 

System of equations, ill-conditioned · 88–93 

System of equations, solving · 16–18, 99, 102–107 

System of nonlinear equations, wolving · 102–107 

T 

Tail of function · 49–50 

Taylor series · 153 

Total sum of squares · 111–18 

Transformation of variables · 47–48 

Trigonometric functions · 154–57 

Trigonometric modes · 58 

U 

Unbiased test · 103 

Uncertainty for f · 40–41 

Uncertainty of matrix · 85 

Unconstrained least-squares . See Least-squares · 96 

Underflow · 44, 100, 150 

Upper-triangular matrix · 82, 96, 119, 120 
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V 

Variables, transforming · 47–48 

W 

Weighted least-squares · 93–94, 97–98, 120 

Weighted normal equations · 94 

Y 

Yield · 35 

Z 

Zero of polynomial · 13 

 

 

 


